预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、下列说法中正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径2、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.3、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD4、如图已知是的两条切线AB为切点线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心其中正确说法的个数是()A.1B.2C.3D.45、下列多边形中内角和最大的是()A.B.C.D.6、如图AB是⊙O的直径点E是AB上一点过点E作CD⊥AB交⊙O于点CD以下结论正确的是()A.若⊙O的半径是2点E是OB的中点则CD=B.若CD=则⊙O的半径是1C.若∠CAB=30°则四边形OCBD是菱形D.若四边形OCBD是平行四边形则∠CAB=60°7、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个8、已知平面内有和点若半径为线段则直线与的位置关系为()A.相离B.相交C.相切D.相交或相切9、已知一个三角形的三边长分别为5、7、8则其内切圆的半径为()A.B.C.D.10、如图破残的轮子上弓形的弦AB为4m高CD为1m则这个轮子的半径长为()A.mB.mC.5mD.m第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在中半径是半径上一点且.是上的两个动点是的中点则的长的最大值等于__________.2、如图是的直径弦于点E则的半径_______.3、如图在中以点为圆心、为半径的圆交于点则弧AD的度数为________度.4、如图已知正六边形ABCDEF的边长为2对角线CF和BE相交于点N对角线DF与BE相交于点M则MN=_____.5、如图在射线AC上顺次截取以为直径作交射线于、两点则线段的长是__________cm.三、解答题(5小题每小题10分共计50分)1、用反证法证明:一条线段只有一个中点.2、已知正方形ABCD中M、N分别为AD边上的两点连接BM、CN并延长交于一点H连接AHE为BM上一点连接AE、CE∠ECH+∠MNH=90°.(1)如图1若E为BM的中点且DM=3AM求线段AB的长.(2)如图2若点F为BE中点点G为CF延长线上一点且EG//BCCE=GE求证:.(3)如图3在(1)的条件下点P为线段AD上一动点连接BP作CQ⊥BP于Q将△BCQ沿BC翻折得到△BCl点K、R分别为线段BC、Bl上两点且BI=3RIBC=4BK连接CR、IK交于点T连接BT直接写出△BCT面积的最大值.3、已知:如图圆O是△ABC的外接圆AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4AB=6求边BC的长.4、如图在⊙O中∠ACB=60°求证∠AOB=∠BOC=∠COA.5、已知的半径是.弦.求圆心到的距离;弦两端在圆上滑动且保持的中点在运动过程中构成什么图形请说明理由.-参考答案-一、单选题1、D【解析】【分析】根据切线的判定圆的知识可得答案.【详解】解:A、在等圆或同圆中长度相等的弧是等弧故A错误;B、平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线故C错误;D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径故D正确;故选D.【考点】本题考查了切线的判定及圆的知识利用圆的知识及切线的判定是解题关键.2、C【解析】【分析】要求∠ACB的度数只需根据圆周角定理构造它所对的弧所对的圆心角即连接OAOB;再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OAOB∵PA、PB分别切⊙O于点A、B∴OA⊥APOB⊥BP∴∠PAO=∠PBO=90°∴∠AOB+∠APB=180°∵∠AOB=2∠ACB∠ACB=∠APB∴3∠ACB=180°∴∠AC