预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.2、如图在△ABC中AG平分∠CAB使用尺规作射线CD与AG交于点E下列判断正确的是()A.AG平分CDB.C.点E是△ABC的内心D.点E到点ABC的距离相等3、已知点在上.则下列命题为真命题的是()A.若半径平分弦.则四边形是平行四边形B.若四边形是平行四边形.则C.若.则弦平分半径D.若弦平分半径.则半径平分弦4、如图在中以点为圆心为半径的圆与相交于点则的长为()A.2B.C.3D.5、已知⊙O中最长的弦为8cm则⊙O的半径为()cm.A.2B.4C.8D.166、如图1一个扇形纸片的圆心角为90°半径为6.如图2将这张扇形纸片折叠使点A与点O恰好重合折痕为CD图中阴影为重合部分则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.7、如图已知在中是直径则下列结论不一定成立的是()A.B.C.D.到、的距离相等8、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.9、如图正五边形内接于⊙为上的一点(点不与点重合)则的度数为()A.B.C.D.10、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.24第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图四边形ABCD内接于⊙O∠A=125°则∠C的度数为______.2、如图已知正六边形ABCDEF的边长为2对角线CF和BE相交于点N对角线DF与BE相交于点M则MN=_____.3、如图直线y=﹣x+6与x轴、y轴分别交于A、B两点点P是以C(﹣10)为圆心1为半径的圆上一点连接PAPB则△PAB面积的最大值为_____.4、如图矩形ABCD的对角线交于点O以点A为圆心AB的长为半径画弧刚好过点O以点D为圆心DO的长为半径画弧交AD于点E若AC=2则图中阴影部分的面积为_____.(结果保留π)5、如图是的内接正三角形点是圆心点分别在边上若则的度数是____度.三、解答题(5小题每小题10分共计50分)1、如图在中.(1)请作出经过A、B两点的圆且该圆的圆心O落在线段AC上(尺规作图保留作图痕迹不写做法);(2)在(1)的条件下已知将线段AB绕点A逆时针旋转后与⊙O交于点E.试证明:B、C、E三点共线.2、如图PA、PB分别切⊙O于A、B连接PO与⊙O相交于C连接AC、BC求证:AC=BC.3、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.4、如图点ABCD在⊙O上=.求证:(1)AC=BD;(2)△ABE∽△DCE.5、已知:如图△ABC中AB=ACAB>BC.求作:线段BD使得点D在线段AC上且∠CBD=∠BAC.作法:①以点A为圆心AB长为半径画圆;②以点C为圆心BC长为半径画弧交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC∴点C在⊙A上.∵点P在⊙A上∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.-参考答案-一、单选题1、C【解析】【分析】当运动到正六边形的角上时圆与两边的切点分别为连接根据正六边形的性质可知故再由锐角三角函数的定义用表示出的长可知圆形纸片不能接触到的部分的面积由此可得出结论.【详解】解:如图所示连接此多边形是正六边形.圆形纸片不能接触到的部分的面积.故选:C.【考点】本题考查的是正多边形和圆熟知正六边形的性质