预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

试卷试卷人教版九年级数学上册第二十四章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图是一圆锥的侧面展开图其弧长为则该圆锥的全面积为A.60πB.85πC.95πD.169π2、已知平面内有和点若半径为线段则直线与的位置关系为()A.相离B.相交C.相切D.相交或相切3、如图是的弦点在过点的切线上交于点.若则的度数等于()A.B.C.D.4、如图在△ABC中cosB=sinC=AC=5则△ABC的面积是()A.B.12C.14D.215、如图点在上则()A.B.C.D.6、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.247、如图⊙O中弦AB⊥CD垂足为EF为的中点连接AF、BF、ACAF交CD于M过F作FH⊥AC垂足为G以下结论:①;②HC=BF:③MF=FC:④其中成立的个数是()A.1个B.2个C.3个D.4个8、如图、为⊙O的切线切点分别为A、B交于点C的延长线交⊙O于点D.下列结论不一定成立的是()A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线9、如图已知中如果以点为圆心的圆与斜边有公共点那么⊙的半径的取值范围是()A.B.C.D.10、下列说法正确的是()①近似数精确到十分位;②在中最小的是;③如图所示在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时首先应假设“这个三角形中有两个钝角”;⑤如图在内一点到这三条边的距离相等则点是三个角平分线的交点.A.1B.2C.3D.4第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图:四边形ABCD内接于⊙OE为BC延长线上一点若∠A=n°则∠DCE=_____°.2、如图已知是的直径且弦点是弧上的点连接、若则的长为______.3、已知圆锥的底面半径为侧面展开图的圆心角是180°则圆锥的高是______.4、如图在平面直角坐标系中点A(01)、B(0﹣1)以点A为圆心AB为半径作圆交x轴于点C、D则CD的长是____.5、如图正方形ABCD边长为4点P和点Q在正方形的边上运动且PQ=4若点P从点B出发沿B→C→D→A的路线向点A运动到点A停止运动;点Q从点A出发沿A→B→C→D的路线向点D运动到达点D停止运动.它们同时出发且运动速度相同则在运动过程中PQ的中点O所经过的路径长为_____.三、解答题(5小题每小题10分共计50分)1、如图已知AB是⊙O的直径CD是⊙O上的点OC∥BD交AD于点E连结BC.(1)求证:AE=ED;(2)若AB=10∠CBD=36°求的长.2、如图两个圆都以点O为圆心大圆的弦交小圆于两点.求证:.3、如图四边形OABC中.OA=OCBA=BC.以O为圆心以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D延长AO交⊙O于点E与此的延长线交于点F若.①补全图形;②求证:OF=OB.4、已知抛物线经过点(m﹣4)交x轴于AB两点(A在B左边)交y轴于C点对于任意实数n不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D使得∠BDC=2∠BAC若有求出点D的坐标若没有请说明理由;(3)将抛物线沿x轴正方向平移一个单位把得到的图象在x轴下方的部分沿x轴向上翻折图的其余部分保持不变得到一个新的图象G若直线y=x+b与新图象G有四个交点求b的取值范围(直接写出结果即可).5、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面圆的半径为r扇形的半径为R先根据弧长公式得到=10π解得R=12再利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到2π•r