预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图已知在中是直径则下列结论不一定成立的是()A.B.C.D.到、的距离相等2、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.3、已知扇形的圆心角为半径为则弧长为()A.B.C.D.4、如图在四边形ABCD中则AB=()A.4B.5C.D.5、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD6、下列多边形中内角和最大的是()A.B.C.D.7、如图已知⊙O的半径为4M是⊙O内一点且OM=2则过点M的所有弦中弦长是整数的共有()A.1条B.2条C.3条D.4条8、如图在中以点为圆心为半径的圆与相交于点则的长为()A.2B.C.3D.9、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°10、下列说法正确的是()①近似数精确到十分位;②在中最小的是;③如图所示在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时首先应假设“这个三角形中有两个钝角”;⑤如图在内一点到这三条边的距离相等则点是三个角平分线的交点.A.1B.2C.3D.4第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图⊙O的直径AB=4P为⊙O上的动点连结APQ为AP的中点若点P在圆上运动一周则点Q经过的路径长是______.2、如图在Rt△ABC中∠ACB=30°⊙E为内切圆若BE=4则△BCE的面积为___________.3、如图圆锥的母线长为10cm高为8cm则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)4、如图在四边形中.若则的内切圆面积________(结果保留).5、如图直线y=﹣x+6与x轴、y轴分别交于A、B两点点P是以C(﹣10)为圆心1为半径的圆上一点连接PAPB则△PAB面积的最大值为_____.三、解答题(5小题每小题10分共计50分)1、(1)课本再现:在中是所对的圆心角是所对的圆周角我们在数学课上探索两者之间的关系时要根据圆心O与的位置关系进行分类.图1是其中一种情况请你在图2和图3中画出其它两种情况的图形并从三种位置关系中任选一种情况证明;(2)知识应用:如图4若的半径为2分别与相切于点AB求的长.2、如图在中的中点.(1)求证:三点在以为圆心的圆上;(2)若求证:四点在以为圆心的圆上.3、用反证法证明:一条线段只有一个中点.4、(1)求图(1)中阴影部分的面积(单位:厘米);(2)如图(2)所示已知大正方形的边长为10厘米小正方形的边长为7厘米求阴影部分面积.(结果保留)5、如图1正五边形内接于⊙阅读以下作图过程并回答下列问题作法:如图2①作直径;②以F为圆心为半径作圆弧与⊙交于点MN;③连接.(1)求的度数.(2)是正三角形吗?请说明理由.(3)从点A开始以长为半径在⊙上依次截取点再依次连接这些分点得到正n边形求n的值.-参考答案-一、单选题1、A【解析】【分析】根据圆心角、弧、弦之间的关系即可得出答案.【详解】在中弦弦则其所对圆心角相等即所对优弧和劣弧分别相等所以有故B项和C项结论正确∵AO=DO=BO=CO∴(SSS)可得出点到弦的距离相等故D项结论正确;而由题意不能推出故A项结论错误.故选:A【考点】此题主要考查圆的基本性质解题的关键是熟知圆心角、弧、弦之间的关系.2、A【解析】【分析】连接CD、OE根据题意证明四边形OCED是菱形然后分别求出扇形OCD和菱形OCED以及△AOB的面积最后利用割补法求解即可.【详解】解:连接CD、OE由题意可知OC=OD=CE=ED弧=弧∴S扇形ECD=S扇形OCD四边形OCED是菱形∴OE垂直平分CD由圆周角定理可知∠COD=∠CED=120°∴CD=2×2×=2∵AB=OA=OB=2∴△AOB是等边三角形∴S△AOB=×2××