一种基于深度学习的保留密度的点云压缩方法.pdf
文宣****66
亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于深度学习的保留密度的点云压缩方法.pdf
本发明提供一种基于深度学习的保留密度的点云压缩方法,用于在点云压缩过程中保留原始点云的密度从而生成高质量的重建点云,其特征在于,包括如下步骤:步骤S1,对预先获取的点云数据进行预处理从而得到训练样本;步骤S2,构建用于提取点云数据的几何信息与密度信息的编码器,并基于编码器获取点云特征;步骤S3,采用熵编码器对点云特征进行压缩;步骤S4,构建用于对点云特征进行上采样的解码器;步骤S5,构建损失函数;步骤S6,基于训练样本对由编码器、熵编码器以及解码器组成的点云压缩模型采用损失函数进行训练;步骤S7,将点云数
一种基于深度学习的点云匹配滤波方法.pdf
本发明涉及地理测绘技术领域,其目的在于提供了一种基于深度学习的点云匹配滤波方法,包括如下步骤:首先基于神经网络模型VGG进行可见光图像的特征识别分类,有效区分地表性质特征;然后基于卡尔曼滤波算法进行点云优化,将点云通过网格与三角形组合的多次构网算法解算的成果与图像分类的成果进行高度匹配,实现特征选择提取,完成三维点云的精细化滤波分类,根据真实的地面点信息进行高精度地表三维场景重建。本发明充分结合神经网络模型VGG与卡尔曼滤波算法,通过先还原拍摄地点的原始图像信息,然后去除云点数据中的噪声干扰,进而能够获得
一种基于深度学习的树木点云补全方法.pdf
本发明公开了一种基于深度学习的树木点云补全方法,本方法为缺失点云预测和补全结果优化两个阶段。在预测阶段我们使用端到端的神经网络,通过给定残缺树木点云预测缺失的部分。在此阶段仅预测缺失部分的点云,保持输入点云不变。但预测结果存在与输入点云融合不好的现象。为此,我们采用点云优化网络对预测结果和原始输入做进一步的处理,以优化总体分布。我们的结果表明,针对残缺树木点云补全,预测网络和优化网络的组合取得了较好的效果。具有补全效率高、形态真实、适用范围广的特点。本发明为避免由于体素化带来的的高存储成本和几何信息的丢失
一种基于结构感知的树木点云压缩方法.pdf
本发明涉及一种基于结构感知的树木点云压缩方法,包括:步骤1:根据树木点云数据,构建点云全连接图;步骤2:根据点云全连接图,得到每个图顶点到根节点的测地距离,根据测地距离,得到基于树木枝干几何拓扑结构的集群;步骤3:根据基于树木枝干几何拓扑结构的集群,得到降采样点云。本发明的基于结构感知树木点云压缩方法,利用测地距离自适应聚类,顾及树木的骨架结构,自动感知树木的拓扑结构,能有效保留树木的细小枝干结构,实现全局和局部的特征保留。
一种保留边界点的点云精简方法.pdf
本发明涉及一种保留边界点的点云精简方法,属于计算机三维建模技术领域。本发明提出的点云精简方法的具体步骤为:①读取原始点云数据;②点云数据的空间划分,并计算出每个数据的最近K邻域;③估算出每个数据点的单位法向量;④获取点云数据的边界数据点,并进行保留;⑤对于非边界点的点云数据,进行重要特点的判断;⑥对非边界数据点进行精简。本文方法与其他方法相比,在对点云数据达到有效的精简时,而且还很好的保留了点云模型的边界特征点;避免了曲率估计的耗时长,在点云平坦区域产生大面积的孔洞现象;对封闭的点云模型和单片的点云模型都