一种基于深度学习的点云匹配滤波方法.pdf
书生****aa
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于深度学习的点云匹配滤波方法.pdf
本发明涉及地理测绘技术领域,其目的在于提供了一种基于深度学习的点云匹配滤波方法,包括如下步骤:首先基于神经网络模型VGG进行可见光图像的特征识别分类,有效区分地表性质特征;然后基于卡尔曼滤波算法进行点云优化,将点云通过网格与三角形组合的多次构网算法解算的成果与图像分类的成果进行高度匹配,实现特征选择提取,完成三维点云的精细化滤波分类,根据真实的地面点信息进行高精度地表三维场景重建。本发明充分结合神经网络模型VGG与卡尔曼滤波算法,通过先还原拍摄地点的原始图像信息,然后去除云点数据中的噪声干扰,进而能够获得
基于深度学习的机载LiDAR点云滤波方法研究.docx
基于深度学习的机载LiDAR点云滤波方法研究摘要:机载LiDAR点云数据在地理信息系统、城市规划、三维建模等领域有着广泛的应用,但点云数据存在着密度不均匀、噪声点、离群点等问题。本文提出了一种基于深度学习的点云滤波方法,利用卷积神经网络实现点云的自适应滤波处理。实验结果表明,该方法能够有效地滤除噪声点和离群点,提高了点云数据的质量和精度。一、引言机载LiDAR点云数据是一种重要的地理信息数据,被广泛应用于城市规划、交通管理、环境监测等领域。然而,由于数据采集方式和设备的限制,点云数据存在很多问题,包括噪声
一种基于深度学习的树木点云补全方法.pdf
本发明公开了一种基于深度学习的树木点云补全方法,本方法为缺失点云预测和补全结果优化两个阶段。在预测阶段我们使用端到端的神经网络,通过给定残缺树木点云预测缺失的部分。在此阶段仅预测缺失部分的点云,保持输入点云不变。但预测结果存在与输入点云融合不好的现象。为此,我们采用点云优化网络对预测结果和原始输入做进一步的处理,以优化总体分布。我们的结果表明,针对残缺树木点云补全,预测网络和优化网络的组合取得了较好的效果。具有补全效率高、形态真实、适用范围广的特点。本发明为避免由于体素化带来的的高存储成本和几何信息的丢失
一种基于深度学习的保留密度的点云压缩方法.pdf
本发明提供一种基于深度学习的保留密度的点云压缩方法,用于在点云压缩过程中保留原始点云的密度从而生成高质量的重建点云,其特征在于,包括如下步骤:步骤S1,对预先获取的点云数据进行预处理从而得到训练样本;步骤S2,构建用于提取点云数据的几何信息与密度信息的编码器,并基于编码器获取点云特征;步骤S3,采用熵编码器对点云特征进行压缩;步骤S4,构建用于对点云特征进行上采样的解码器;步骤S5,构建损失函数;步骤S6,基于训练样本对由编码器、熵编码器以及解码器组成的点云压缩模型采用损失函数进行训练;步骤S7,将点云数
一种基于深度学习的图像匹配方法.pdf
本发明涉及一种基于深度学习的图像匹配方法,是通过搭建一个包括特征提取模块、特征融合模块和特征匹配模块的深度学习模型,融合其中的不同分辨率特征得到高分辨率的融合特征图,结合带有空间间隔连接结构的神经网络层模型的精细化匹配与重采样迭代,实现在不增加计算复杂度情况下增加匹配的搜索范围,并基于按需设定的损失函数对学习模型参数进行优化,最终输出优化后的模型参数及其匹配结果。由于保留了匹配过程中高分辨率像素的自由度,故更易得到存在尺度变换物体的像素对应关系,从而确保每一个所估计的像素对应关系的可靠性,既可辅助不同层数