预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图是的直径若则的度数是()A.32°B.60°C.68°D.64°2、如图在△ABC中cosB=sinC=AC=5则△ABC的面积是()A.B.12C.14D.213、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定4、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°5、如图是的直径弦于点则的长为()A.4B.5C.8D.166、下列图形为正多边形的是()A.B.C.D.7、已知:如图AB是⊙O的直径点P在BA的延长线上弦CD交AB于E连接OD、PC、BC∠AOD=2∠ABC∠P=∠D过E作弦GF⊥BC交圆与G、F两点连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④8、如图在中cmcm.是边上的一个动点连接过点作于连接在点变化的过程中线段的最小值是()A.1B.C.2D.9、已知扇形的半径为6圆心角为.则它的面积是()A.B.C.D.10、如图所示MN为⊙O的弦∠N=52°则∠MON的度数为()A.38°B.52°C.76°D.104°第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在⊙O中是⊙O的直径点是点关于的对称点是上的一动点下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.2、用反证法证明:“如果两条直线都和第三条直线平行那么这两条直线也互相平行”.第一步应假设:______.3、如图所示是一个几何体的三视图如果一只蚂蚁从这个几何体的点出发沿表面爬到的中点处则最短路线长为__________.4、如图:四边形ABCD内接于⊙OE为BC延长线上一点若∠A=n°则∠DCE=_____°.5、如图在射线AC上顺次截取以为直径作交射线于、两点则线段的长是__________cm.三、解答题(5小题每小题10分共计50分)1、如图内接于则的直径等于多少?2、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.3、已知:..求作:使它经过点和点并且圆心在的平分线上4、(1)如图①在△ABC中AB=4AC=3若AD平分∠BAC交于点那么点到的距离为.(2)如图②四边形内接于为直径点B是半圆的三等分点(弧弧)连接若平分且求四边形的面积.(3)如图③为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮其中一块圆形场地圆O设计人员准备在内接四边形ABCD区域内进行花卉图案设计其余部分方便游客参观按照设计要求四边形ABCD满足∠ABC=60°AB=AD且AD+DC=10(其中)为让游客有更好的观体验四边形ABCD花卉的区域面积越大越好那么是否存在面积最大的四边形ABCD?若存在求出这个最大值不存在请说明理由.5、如图所示AB是⊙O的直径点C为⊙O上一点过点B作BD⊥CD垂足为点D连结BC.BC平分∠ABD.求证:CD为⊙O的切线.-参考答案-一、单选题1、D【解析】【分析】根据已知条件和圆心角、弧、弦的关系可知然后根据对顶角相等即可求解.【详解】.故选:D.【考点】本题主要考查圆心角、弧、弦的关系、对顶角相等较简单掌握基本概念是解题关键.2、A【解析】【分析】根据已知作出三角形的高线AD进而得出ADBDCD的长即可得出三角形的面积.【详解】解:过点A作AD⊥BC∵△ABC中cosB=sinC=AC=5∴cosB==∴∠B=45°∵sinC===∴AD=3∴CD==4∴BD=3则△ABC的面积是:×AD×BC=×3×(3+4)=.故选A.【考点】此题