预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定2、如图⊙O中弦AB⊥CD垂足为EF为的中点连接AF、BF、ACAF交CD于M过F作FH⊥AC垂足为G以下结论:①;②HC=BF:③MF=FC:④其中成立的个数是()A.1个B.2个C.3个D.4个3、若某圆锥的侧面展开图是一个半圆已知圆锥的底面半径为r那么圆锥的高为()A.B.C.D.4、下列说法正确的是()①近似数精确到十分位;②在中最小的是;③如图所示在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时首先应假设“这个三角形中有两个钝角”;⑤如图在内一点到这三条边的距离相等则点是三个角平分线的交点.A.1B.2C.3D.45、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°6、已知扇形的圆心角为半径为则弧长为()A.B.C.D.7、如图一个油桶靠在直立的墙边量得并且则这个油桶的底面半径是()A.B.C.D.8、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°9、如图⊙O的直径垂直于弦垂足为.若则的长是()A.B.C.D.10、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.11第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在中将绕顺时针旋转后得将线段绕点逆时针旋转后得线段分别以为圆心、长为半径画弧和弧连接则图中阴影部分面积是________.2、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.3、如图△ABC是⊙O的内接三角形AB是⊙O的直径I是△ABC的内心则∠BIA的度数是_______°.4、如图正方形ABCD边长为4点P和点Q在正方形的边上运动且PQ=4若点P从点B出发沿B→C→D→A的路线向点A运动到点A停止运动;点Q从点A出发沿A→B→C→D的路线向点D运动到达点D停止运动.它们同时出发且运动速度相同则在运动过程中PQ的中点O所经过的路径长为_____.5、如图将三角形AOC绕点O顺时针旋转120°得三角形BOD已知OA=4OC=1那么图中阴影部分的面积为_____.(结果保留π)三、解答题(5小题每小题10分共计50分)1、如图已知抛物线的顶点坐标为M与x轴相交于AB两点(点B在点A的右侧)与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:()并指出顶点M的坐标;(2)在抛物线的对称轴上找点R使得CR+AR的值最小并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧)求证:直线MP是⊙N的切线.2、如图AB是⊙O的直径DE为⊙O上位于AB异侧的两点连接BD并延长至点C使得CD=BD连接AC交⊙O于点F连接AEDEDF.(1)证明:∠E=∠C;(2)若∠E=55°求∠BDF的度数.3、如图的两条弦(AB不是直径)点E为AB中点连接ECED.(1)直线EO与AB垂直吗?请说明理由;(2)求证:.4、如图沿一条母线将圆锥侧面剪开并展平得到一个扇形若圆锥的底面圆的半径扇形的圆心角求该圆锥的母线长.5、已知P为⊙O上一点过点P作不过圆心的弦PQ在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合)连接AP、BP若∠APQ=∠BPQ(1)如图1当∠APQ=45°AP=1BP=2时求⊙O的半径。(2)如图2连接AB交PQ于点M点N在线段PM上(不与P、M重合)连接ON、OP设∠NOP=α∠OPN=β若AB平行于ON探究α与β的数量关系。-参考答案-一、单选题1、A【解析】【分析】根据点A的坐标求出OA=2根据点与圆的位置关系即可做出判断.【详解】解:∵点A的坐标为(1)∴由勾股定理可得:OA=又∵⊙O的半径为2∴点A在⊙O上.故选:A.【考点】本题考查了点和圆的位置关系点