预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、下列多边形中内角和最大的是()A.B.C.D.2、如图⊙O的半径为5cm直线l到点O的距离OM=3cm点A在l上AM=3.8cm则点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能3、下列图形为正多边形的是()A.B.C.D.4、如图已知⊙O的半径为4M是⊙O内一点且OM=2则过点M的所有弦中弦长是整数的共有()A.1条B.2条C.3条D.4条5、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD6、如图破残的轮子上弓形的弦AB为4m高CD为1m则这个轮子的半径长为()A.mB.mC.5mD.m7、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定8、如图在四边形ABCD中则AB=()A.4B.5C.D.9、如图点A、B、C在⊙O上且∠ACB=100o则∠α度数为()A.160oB.120oC.100oD.80o10、如图点在上则()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在中以点为圆心、为半径的圆交于点则弧AD的度数为________度.2、如图在平面直角坐标系中点A的坐标是(200)点B的坐标是(160)点C、D在以OA为直径的半圆M上且四边形OCDB是平行四边形则点C的坐标为_____.3、如图在⊙O中CD是直径弦ABCD垂足为E连接BC若AB=cm则圆O的半径为_______cm.4、如图是的直径弦于点且则的半径为__________.5、一个扇形的弧长是面积是则这个扇形的圆心角是___度.三、解答题(5小题每小题10分共计50分)1、如图1正五边形内接于⊙阅读以下作图过程并回答下列问题作法:如图2①作直径;②以F为圆心为半径作圆弧与⊙交于点MN;③连接.(1)求的度数.(2)是正三角形吗?请说明理由.(3)从点A开始以长为半径在⊙上依次截取点再依次连接这些分点得到正n边形求n的值.2、如图四边形OABC中.OA=OCBA=BC.以O为圆心以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D延长AO交⊙O于点E与此的延长线交于点F若.①补全图形;②求证:OF=OB.3、如下图是一个隧道的横截面它的形状是以点O为圆心的圆的一部分.如果M是中弦的中点经过圆心O交圆O于点E并且.求的半径.4、如图四边形ABCD内接于⊙OAB为⊙O的直径过点C作CE⊥AD交AD的延长线于点E延长ECAB交于点F∠ECD=∠BCF.(1)求证:CE为⊙O的切线;(2)若DE=1CD=3求⊙O的半径.5、问题提出(1)如图①在△ABC中AB=AC=10BC=12点O是△ABC的外接圆的圆心则OB的长为问题探究(2)如图②已知矩形ABCDAB=4AD=6点E为AD的中点以BC为直径作半圆O点P为半圆O上一动点求E、P之间的最大距离;问题解决(3)某地有一块如图③所示的果园果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的果园主人现要从入口D到上的一点P修建一条笔直的小路DP.已知AD∥BC∠ADB=45°BD=120米BC=160米过弦BC的中点E作EF⊥BC交于点F又测得EF=40米.修建小路平均每米需要40元(小路宽度不计)不考虑其他因素请你根据以上信息帮助果园主人计算修建这条小路最多要花费多少元?-参考答案-一、单选题1、D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形其内角和为180°;B、是一个四边形其内角和为360°;C、是一个五边形其内角和为540°;D、是一个六边形其内角和为720°;∴内角和最大的是六边形;故选D.【考点】本题主要考查多边形内角和熟练掌握多边形内角和公式是解题的关键.2、A【解析】【详解】如图连接OA则在直角△OMA中根据勾股定理得到OA=.∴点A与⊙O的位置关系是:点A在⊙O内.故选A.3、D【解析】【分析】根据正多边形的定义:各个角都相等各