预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、往直径为的圆柱形容器内装入一些水以后截面如图所示若水面宽则水的最大深度为()A.B.C.D.2、如图AB是⊙O的直径点E是AB上一点过点E作CD⊥AB交⊙O于点CD以下结论正确的是()A.若⊙O的半径是2点E是OB的中点则CD=B.若CD=则⊙O的半径是1C.若∠CAB=30°则四边形OCBD是菱形D.若四边形OCBD是平行四边形则∠CAB=60°3、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定4、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.245、如图已知长方形中圆B的半径为1圆A与圆B内切则点与圆A的位置关系是()A.点C在圆A外点D在圆A内B.点C在圆A外点D在圆A外C.点C在圆A上点D在圆A内D.点C在圆A内点D在圆A外6、已知⊙O的半径为4点O到直线m的距离为d若直线m与⊙O公共点的个数为2个则d可取()A.5B.4.5C.4D.07、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.118、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.9、如图⊙O的直径垂直于弦垂足为.若则的长是()A.B.C.D.10、如图正三角形PMN的顶点分别是正六边形ABCDEF三边的中点则三角形PMN与六边形ABCDEF的面积之比()A.1:2B.1:3C.2:3D.3:8第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在⊙O中的度数等于250°半径OC垂直于弦AB垂足为D那么AC的度数等于________度.2、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).3、如图将绕点顺时针旋转25°得到EF交BC于点N连接AN若则__________.4、如图抛物线的图象与坐标轴交于点、、顶点为以为直径画半圆交轴的正半轴于点圆心为是半圆上的一动点连接是的中点当沿半圆从点运动至点时点运动的路径长是__________.5、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.三、解答题(5小题每小题10分共计50分)1、已知:如图△ABC中AB=ACAB>BC.求作:线段BD使得点D在线段AC上且∠CBD=∠BAC.作法:①以点A为圆心AB长为半径画圆;②以点C为圆心BC长为半径画弧交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC∴点C在⊙A上.∵点P在⊙A上∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.2、如图PA、PB分别切⊙O于A、B连接PO与⊙O相交于C连接AC、BC求证:AC=BC.3、如图已知等边△ABC内接于☉OBD为内接正十二边形的一边CD=5cm求☉O的半径R.4、如图比较与的长度并证明你的结论.5、抛物线y=ax2+2x+c与x轴交于A(﹣10)、B两点与y轴交于点C(03)点D(m3)在抛物线上.(1)求抛物线的解析式;(2)如图1连接BC、BD点P在对称轴左侧的抛物线上若∠PBC=∠DBC求点P的坐标;(3)如图2点Q为第四象限抛物线上一点经过C、D、Q三点作⊙M⊙M的弦QF∥y轴求证:点F在定直线上.-参考答案-一、单选题1、C【解析】【分析】过点O作OD⊥AB于D交⊙O于E连接OA根据垂径定理即可求得AD的长又由⊙O的直径为求得OA的长然后根据勾股定理即可求得OD的长进而求得油的最大深度的长.【详解】解:过点O作OD⊥AB于D交⊙O于E连接OA由垂径定理得:∵⊙O的直径为∴在中由勾股定理得:∴∴油