预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°2、如图⊙O的直径垂直于弦垂足为.若则的长是()A.B.C.D.3、如图在▱ABCD中为的直径⊙O和相切于点E和相交于点F已知则的长为()A.B.C.D.24、如图是的弦点在过点的切线上交于点.若则的度数等于()A.B.C.D.5、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸6、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.7、在平面直角坐标系xOy中已知点A(43)以原点O为圆心5为半径作⊙O则()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与⊙O的位置关系无法确定8、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD9、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的底面和侧面则圆锥的表面积为()A.B.C.D.10、已知点在半径为8的外则()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在中∠ABC=90°∠A=58°AC=18点D为边AC的中点.以点B为圆心BD为半径画圆弧交边BC于点E则图中阴影部分图形的面积为______.a2、如图在中点是的中点连接交弦于点若则的长是______.3、如图四边形ABCD内接于⊙O∠A=125°则∠C的度数为______.4、一个圆锥的底面半径r=6高h=8则这个圆锥的侧面积是_____.5、如图在一边长为的正六边形中分别以点AD为圆心长为半径作扇形扇形则图中阴影部分的面积为___________.(结果保留)三、解答题(5小题每小题10分共计50分)1、如图是的直径点是上一点点是延长线上一点是的弦.(1)求证:直线是的切线;(2)若求的半径;(3)若于点点为上一点连接请找出之间的关系并证明.2、如图已知在⊙O中直径MN=10正方形ABCD的四个顶点分别在⊙O及半径OM、OP上并且∠POM=45°求正方形的边长.3、在中D为的中点EF分别为上任意一点连接将线段绕点E顺时针旋转90°得到线段连接.(1)如图1点E与点C重合且的延长线过点B若点P为的中点连接求的长;(2)如图2的延长线交于点M点N在上且求证:;(3)如图3F为线段上一动点E为的中点连接H为直线上一动点连接将沿翻折至所在平面内得到连接直接写出线段的长度的最小值.4、如图点在上且以为圆心为半径作圆.(1)讨论射线与公共点个数并写出对应的取值范围;(2)若是上一点当时求线段与的公共点个数.5、如图1正五边形内接于⊙阅读以下作图过程并回答下列问题作法:如图2①作直径;②以F为圆心为半径作圆弧与⊙交于点MN;③连接.(1)求的度数.(2)是正三角形吗?请说明理由.(3)从点A开始以长为半径在⊙上依次截取点再依次连接这些分点得到正n边形求n的值.-参考答案-一、单选题1、B【解析】【分析】连接OAOB.根据圆周角定理和四边形内角和定理求解即可.【详解】连接OAOB∵PA、PB切⊙O于点A、B∴∠PAO=∠PBO=90°由圆周角定理知∠AOB=2∠ACB=130°∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故选:B.【考点】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.2、C【解析】【分析】根据直角三角形的性质可求出CE=1再根据垂径定理可