预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图已知长方形中圆B的半径为1圆A与圆B内切则点与圆A的位置关系是()A.点C在圆A外点D在圆A内B.点C在圆A外点D在圆A外C.点C在圆A上点D在圆A内D.点C在圆A内点D在圆A外2、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°3、如图AB是⊙O的直径BC与⊙O相切于点BAC交⊙O于点D若∠ACB=50°则∠BOD等于()A.40°B.50°C.60°D.80°4、一个等腰直角三角形的内切圆与外接圆的半径之比为()A.B.C.D.5、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.6、如图正方形的边长为4以点为圆心为半径画圆弧得到扇形(阴影部分点在对角线上).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是()A.B.1C.D.7、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定8、如图点在上则()A.B.C.D.9、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的底面和侧面则圆锥的表面积为()A.B.C.D.10、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图:四边形ABCD内接于⊙OE为BC延长线上一点若∠A=n°则∠DCE=_____°.2、已知圆锥的底面半径为侧面展开图的圆心角是180°则圆锥的高是______.3、已知:如图半圆O的直径AB=12cm点CD是这个半圆的三等分点则弦ACAD和CD围成的图形(图中阴影部分)的面积S是___.4、如图AB是⊙O的直径点CDE都在⊙O上∠1=55°则∠2=_____°.5、如图直线y=﹣x+6与x轴、y轴分别交于A、B两点点P是以C(﹣10)为圆心1为半径的圆上一点连接PAPB则△PAB面积的最大值为_____.三、解答题(5小题每小题10分共计50分)1、如图△ABC内接于⊙O∠A=30°过圆心O作OD⊥BC垂足为D.若⊙O的半径为6求OD的长.2、已知:如图圆O是△ABC的外接圆AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4AB=6求边BC的长.3、如图比较与的长度并证明你的结论.4、如图在直角梯形ABCD中AD∥BC∠ABC=90°AB=12cmAD=8cmBC=22cmAB为⊙O的直径动点P从点A开始沿AD边向点D以1cm/s的速度运动动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发当其中一个动点到达端点时另一个动点也随之停止运动设运动时间为t(s).(1)当t为何值时四边形PQCD为平行四边形?(2)当t为何值时PQ与⊙O相切?5、在中D为的中点EF分别为上任意一点连接将线段绕点E顺时针旋转90°得到线段连接.(1)如图1点E与点C重合且的延长线过点B若点P为的中点连接求的长;(2)如图2的延长线交于点M点N在上且求证:;(3)如图3F为线段上一动点E为的中点连接H为直线上一动点连接将沿翻折至所在平面内得到连接直接写出线段的长度的最小值.-参考答案-一、单选题1、C【解析】【分析】根据内切得出圆A的半径再判断点D、点E到圆心的距离即可【详解】∵圆A与圆B内切圆B的半径为1∴圆A的半径为5∵<5∴点D在圆A内在Rt△ABC中∴点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理熟练掌握点与圆的位置关系是关键2、C【解析】【分析】连接AC然后根据圆内接四边形的性质可以得到∠ADC的度数再根据点D是弧AC的中点可以得到∠DCA的度数直径所对的圆周角是90°从而可以求得∠BCD的度数.【详解】解:连接AC∵∠ABC=50°四边形ABCD是圆内接四边形∴∠ADC=130°∵点D是弧AC的中点∴CD=AC∴∠DCA=∠DAC=25°