预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图、为的切线、为切点点为弧上一点过点作的切线分别交、于、若则的周长等于().A.B.C.D.2、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°3、下列语句错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦4、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.5、如图在中AB=AC=5点在上且点E是AB上的动点连结点G分别是BCDE的中点连接当AG=FG时线段长为()A.B.C.D.46、如图在△ABC中AG平分∠CAB使用尺规作射线CD与AG交于点E下列判断正确的是()A.AG平分CDB.C.点E是△ABC的内心D.点E到点ABC的距离相等7、如图⊙O中弦AB⊥CD垂足为EF为的中点连接AF、BF、ACAF交CD于M过F作FH⊥AC垂足为G以下结论:①;②HC=BF:③MF=FC:④其中成立的个数是()A.1个B.2个C.3个D.4个8、已知平面内有和点若半径为线段则直线与的位置关系为()A.相离B.相交C.相切D.相交或相切9、一个商标图案如图中阴影部分在长方形中以点为圆心为半径作圆与的延长线相交于点则商标图案的面积是()A.B.C.D.10、如图已知长方形中圆B的半径为1圆A与圆B内切则点与圆A的位置关系是()A.点C在圆A外点D在圆A内B.点C在圆A外点D在圆A外C.点C在圆A上点D在圆A内D.点C在圆A内点D在圆A外第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、已知直线m与半径为5cm的⊙O相切于点PAB是⊙O的一条弦且若AB=6cm则直线m与弦AB之间的距离为_____.2、一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.3、如图AB为△ADC的外接圆⊙O的直径若∠BAD=50°则∠ACD=_____°.4、如图四边形是正方形曲线是由一段段90度的弧组成的.其中:的圆心为点A半径为;的圆心为点B半径为;的圆心为点C半径为;的圆心为点D半径为;…的圆心依次按点ABCD循环.若正方形的边长为1则的长是_________.5、如图正方形ABCD边长为4点P和点Q在正方形的边上运动且PQ=4若点P从点B出发沿B→C→D→A的路线向点A运动到点A停止运动;点Q从点A出发沿A→B→C→D的路线向点D运动到达点D停止运动.它们同时出发且运动速度相同则在运动过程中PQ的中点O所经过的路径长为_____.三、解答题(5小题每小题10分共计50分)1、下列每个正方形的边长为2求下图中阴影部分的面积.2、如图①已知抛物线的图象与轴交于、两点(在的左侧)与的正半轴交于点连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为点的坐标为_____(2)若以为圆心的圆与轴和直线都相切试求出抛物线的解析式:(3)在(2)的条件下如图②是的正半轴上一点过点作轴的平行线与直线交于点与抛物线交于点连结将沿翻折的对应点为’在图②中探究:是否存在点使得’恰好落在轴上?若存在请求出的坐标:若不存在请说明理由.3、如图在△ABC中AB=AC∠BAC=120°点D在边BC上⊙O经过点A和点B且与边BC相交于点D.(1)判断AC与⊙O的位置关系并说明理由.(2)当CD=5时求⊙O的半径.4、如图分别切、于点、.切于点交于点与不重合).(1)用直尺和圆规作出;(保留作图痕迹不写作法)(2)若半径为1求的长.5、如图四边形OABC中.OA=OCBA=BC.以O为圆心以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D延长AO交⊙O于点E与此的延长线交于点F若.①补全图形;②求证:OF=OB.-参考答案-一、单选题1、B【解析】【分析】由切线长定理可得然后根据线段之间的转化即可求