预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图AB是的直径点B是弧CD的中点AB交弦CD于E且则()A.2B.3C.4D.52、如图AB是⊙O的弦等边三角形OCD的边CD与⊙O相切于点P连接OAOBOPAD.若∠COD+∠AOB=180°AB=6则AD的长是()A.6B.3C.2D.3、如图在中AB=AC=5点在上且点E是AB上的动点连结点G分别是BCDE的中点连接当AG=FG时线段长为()A.B.C.D.44、下列图形为正多边形的是()A.B.C.D.5、已知一个扇形的弧长为圆心角是则它的半径长为()A.6cmB.5cmC.4cmD.3cm6、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.7、已知扇形的圆心角为半径为则弧长为()A.B.C.D.8、已知中点P为边AB的中点以点C为圆心长度r为半径画圆使得点AP在⊙C内点B在⊙C外则半径r的取值范围是()A.B.C.D.9、如图AC是⊙O的直径弦AB//CD若∠BAC=32°则∠AOD等于()A.64°B.48°C.32°D.76°10、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在的方格纸中每个小方格都是边长为1的正方形其中A、B、C为格点作的外接圆则的长等于_____.2、已知的半径为直线与相交则圆心到直线距离的取值范围是__________.3、如图:四边形ABCD内接于⊙OE为BC延长线上一点若∠A=n°则∠DCE=_____°.4、如图圆锥的母线长为10cm高为8cm则该圆锥的侧面展开图(扇形)的弧长为_____cm.(结果用π表示)5、如图△ABC是⊙O的内接三角形AB是⊙O的直径I是△ABC的内心则∠BIA的度数是_______°.三、解答题(5小题每小题10分共计50分)1、如图在中以为直径作过点作交于.求证:是的切线.2、在平面直角坐标系中平行四边形的顶点AD的坐标分别是其中.(1)若点B在x轴的上方①求的长;②且.证明:四边形是菱形;(2)抛物线经过点BC.对于任意的当am的值变化时抛物线会不同记其中任意两条抛物线的顶点为(与不重合)则命题“对所有的ab当时一定不存在的情形.”是否正确?请说明理由.3、如图以Rt△ABC的AC边为直径作⊙O交斜边AB于点E连接EO并延长交BC的延长线于点D点F为BC的中点连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2∠EAC=60°求AD的长.4、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.5、如图所示四边形ABCD的顶点在同一个圆上另一个圆的圆心在AB边上且该圆与四边形ABCD的其余三条边相切.求证:.-参考答案-一、单选题1、C【解析】【分析】是的直径点是弧的中点从而可知然后利用勾股定理即可求出的长度.【详解】解:设半径为连接是的直径点是弧的中点由垂径定理可知:且点是的中点由勾股定理可知:由勾股定理可知:解得:故选:C.【考点】本题考查垂径定理解题的关键是正确理解垂径定理以及勾股定理本题属于中等题型2、C【解析】【分析】如图过作于过作于先证明三点共线再求解的半径证明四边形是矩形再求解从而利用勾股定理可得答案.【详解】解:如图过作于过作于是的切线三点共线为等边三角形四边形是矩形故选:【考点】本题考查的是等腰三角形等边三角形的性质勾股定理的应用矩形的判定与性质切线的性质锐角三角函数的应用灵活应用以上知识是解题的关键.3、A【解析】【分析】连接DFEF过点F作FN⊥ACFM⊥AB结合直角三角形斜边中线等于斜边的一半求得点ADFE四点共圆∠DF