预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图所示一个半径为r(r<1)的图形纸片在边长为10的正六边形内任意运动则在该六边形内这个圆形纸片不能接触到的部分面积是()A.B.C.D.2、如图点O是△ABC的内心若∠A=70°则∠BOC的度数是()A.120°B.125°C.130°D.135°3、如图是的直径弦于点则的长为()A.4B.5C.8D.164、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.25、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°6、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸7、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°8、若某圆锥的侧面展开图是一个半圆已知圆锥的底面半径为r那么圆锥的高为()A.B.C.D.9、如图矩形中分别是边上的动点以为直径的与交于点.则的最大值为().A.48B.45C.42D.4010、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.24第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图所示的网格由边长为个单位长度的小正方形组成点、、、在直角坐标系中的坐标分别为则内心的坐标为______.2、如图AB为△ADC的外接圆⊙O的直径若∠BAD=50°则∠ACD=_____°.3、如图一下水管道横截面为圆形直径为100cm下雨前水面宽为60cm一场大雨过后水面宽为80cm则水位上升______cm.4、已知:如图半圆O的直径AB=12cm点CD是这个半圆的三等分点则弦ACAD和CD围成的图形(图中阴影部分)的面积S是___.5、如图已知的半径为2内接于则__________.三、解答题(5小题每小题10分共计50分)1、如图已知⊙O为Rt△ABC的内切圆切点分别为DEF且∠C=90°AB=13BC=12.(1)求BF的长;(2)求⊙O的半径r.2、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.3、如图四边形内接于对角线垂足为于点直线与直线于点.(1)若点在内如图1求证:和关于直线对称;(2)连接若且与相切如图2求的度数.4、已知:..求作:使它经过点和点并且圆心在的平分线上5、如图所示四边形ABCD的顶点在同一个圆上另一个圆的圆心在AB边上且该圆与四边形ABCD的其余三条边相切.求证:.-参考答案-一、单选题1、C【解析】【分析】当运动到正六边形的角上时圆与两边的切点分别为连接根据正六边形的性质可知故再由锐角三角函数的定义用表示出的长可知圆形纸片不能接触到的部分的面积由此可得出结论.【详解】解:如图所示连接此多边形是正六边形.圆形纸片不能接触到的部分的面积.故选:C.【考点】本题考查的是正多边形和圆熟知正六边形的性质是解答此题的关键.2、B【解析】【分析】利用内心的性质得∠OBC=∠ABC∠OCB=∠ACB再根据三角形内角和计算出∠OBC+∠OCB=55°然后再利用三角形内角和计算∠BOC的度数.【详解】解:∵O是△ABC的内心∴OB平分∠ABCOC平分∠ACB∴∠OBC=∠ABC∠OCB=∠ACB∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=