预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.2、如图⊙O的半径为5cm直线l到点O的距离OM=3cm点A在l上AM=3.8cm则点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能3、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.24、如图已知中如果以点为圆心的圆与斜边有公共点那么⊙的半径的取值范围是()A.B.C.D.5、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个6、如图是的弦点在过点的切线上交于点.若则的度数等于()A.B.C.D.7、如图正五边形内接于⊙为上的一点(点不与点重合)则的度数为()A.B.C.D.8、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定9、如图、为⊙O的切线切点分别为A、B交于点C的延长线交⊙O于点D.下列结论不一定成立的是()A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线10、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、圆锥形冰淇淋的母线长是12cm侧面积是60πcm2则底面圆的半径长等于_____.2、已知在平面直角坐标系中点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点使为直角三角形则的值是____.3、如图在Rt△ABC中∠ACB=30°⊙E为内切圆若BE=4则△BCE的面积为___________.4、如图在⊙O中的度数等于250°半径OC垂直于弦AB垂足为D那么AC的度数等于________度.5、圆锥的底面半径为3侧面积为则这个圆锥的母线长为________.三、解答题(5小题每小题10分共计50分)1、如图两个圆都以点O为圆心大圆的弦交小圆于两点.求证:.2、如图为⊙的直径过圆上一点作⊙的切线交的延长线与点过点作交于点连接.(1)直线与⊙相切吗?并说明理由;(2)若求的长.3、如图已知在⊙O中直径MN=10正方形ABCD的四个顶点分别在⊙O及半径OM、OP上并且∠POM=45°求正方形的边长.4、在中已知⊙O经过点C且与相切于点D.(1)在图中作出⊙O;(要求:尺规作图不写作法保留作图痕迹)(2)若点D是边上的动点设⊙O与边、分别相交于点E、F求的最小值.5、如图OC为⊙O的半径弦AB⊥OC于点DOC=10CD=4求AB的长.-参考答案-一、单选题1、B【解析】【分析】扇形面积公式为:利用公式直接计算即可得到答案.【详解】解:圆的半径为扇形的圆心角为故选:【考点】本题考查的是扇形的面积的计算掌握扇形的面积的计算公式是解题的关键.2、A【解析】【详解】如图连接OA则在直角△OMA中根据勾股定理得到OA=.∴点A与⊙O的位置关系是:点A在⊙O内.故选A.3、B【解析】【分析】过D作DE⊥AB垂足为E先利用圆周角的性质和角平分线的性质得到DE=DC=1再说明Rt△DEB≌Rt△DCB得到BE=BC然后再利用勾股定理求得AE设BE=BC=xAB=AE+BE=x+最后根据勾股定理列式求出x进而求得AB.【详解】解:如图:过D作DE⊥AB垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中AD=AC-DC=3-1=2AE=设BE=BC=xAB=AE+BE=x+在Rt△ABC中AB2=AC2+BC2则(x+)2=32+x2解得x=∴AB=+=2故填:2.【考点】本题主要考查了圆周角定理、角平分线