预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.242、如图破残的轮子上弓形的弦AB为4m高CD为1m则这个轮子的半径长为()A.mB.mC.5mD.m3、如图点在上则()A.B.C.D.4、如图AB是⊙O的弦等边三角形OCD的边CD与⊙O相切于点P连接OAOBOPAD.若∠COD+∠AOB=180°AB=6则AD的长是()A.6B.3C.2D.5、如图△ABC内接于⊙O∠A=50°.E是边BC的中点连接OE并延长交⊙O于点D连接BD则∠D的大小为()A.55°B.65°C.60°D.75°6、如图在等腰Rt△ABC中AC=BC=点P在以斜边AB为直径的半圆上M为PC的中点.当点P沿半圆从点A运动至点B时点M运动的路径长是()A.πB.πC.πD.27、已知中点P为边AB的中点以点C为圆心长度r为半径画圆使得点AP在⊙C内点B在⊙C外则半径r的取值范围是()A.B.C.D.8、下列多边形中内角和最大的是()A.B.C.D.9、在平面直角坐标系中⊙O的半径为2点A(1)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定10、如图已知⊙O的半径为4M是⊙O内一点且OM=2则过点M的所有弦中弦长是整数的共有()A.1条B.2条C.3条D.4条第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图已知的半径为2内接于则__________.2、如图在Rt△ABC中∠ACB=30°⊙E为内切圆若BE=4则△BCE的面积为___________.3、如图⊙O的直径AB=4P为⊙O上的动点连结APQ为AP的中点若点P在圆上运动一周则点Q经过的路径长是______.4、如图在中点是的中点连接交弦于点若则的长是______.5、如图所示的扇形中C为上一点连接过C作的垂线交于点D则图中阴影部分的面积为_______.三、解答题(5小题每小题10分共计50分)1、如图已知四边形ABCD内接于⊙O且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:(1)保留作图痕迹写出作法写明答案;(2)证明你的作法的正确性.2、如图在△ABC中以AB为直径的⊙O交AC于点M弦交AB于点E且ME=3AE=4AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.3、已知PAPB分别与⊙O相切于点AB∠APB=80°C为⊙O上一点.(1)如图①求∠ACB的大小;(2)如图②AE为⊙O的直径AE与BC相交于点D.若AB=AD求∠EAC的大小.4、如图已知等边△ABC内接于☉OBD为内接正十二边形的一边CD=5cm求☉O的半径R.5、如图正方形ABCD的外接圆为⊙O点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8求正方形ABCD的边长.-参考答案-一、单选题1、C【解析】【分析】如图先求解正六边形的中心角再证明是等边三角形从而可得答案.【详解】解:如图为正六边形的中心为正六边形的半径为等边三角形正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆正多边形的半径中心角周长掌握以上知识是解题的关键.2、D【解析】【分析】连接OB由垂径定理得出BD的长;连接OB再在中由勾股定理得出方程解方程即可.【详解】解:连接OB如图所示:由题意得:OC⊥AB∴AD=BD=AB=2(m)在Rt△OBD中根据勾股定理得:OD2+BD2=OB2即(OB﹣1)2+22=OB2解得:OB=(m)即这个轮子的半径长为m故选:D.【考点】本题主要考查垂径定理的应用以及勾股定理熟练掌握垂径定理和勾股定理是解题的关键.3、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案.【详解】解:点在上故选:【考点】本题考查的两条弧两个圆心角两条弦之间的关系圆周角定理等弧的概念与性质掌握同弧或等弧的概念与性质是解题的关键.4、C【解析】【分析】如图过作于过作于先证明三点共线再求解的半径证明四边形是矩形再求解从而利用勾股定理可得答案.【详解】解:如图过作于过作于