基于低秩张量分解和自适应图全变分的高光谱图像去噪方法及系统.pdf
小琛****82
亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于低秩张量分解和自适应图全变分的高光谱图像去噪方法及系统.pdf
本发明公开一种基于低秩张量分解和自适应图全变分的高光谱图像去噪方法及系统,首先构造高光谱去噪模型;利用增广拉格朗日乘子法对张量分解和自适应图全变分的高光谱去噪模型的变量逐个交替求解;利用经典的HOOI算法求解第一个变量;基于高光谱图像的波段数求解第二个变量;利用软阈值收缩求解第三个变量;通过对所述模型的第四个变量直接求导;并对所得到的所有变量的结果进行迭代;将当前迭代结果与设定的迭代终止条件进行比较,直至满足收敛条件。本发明提供的方法,本方法相对于LRTV采用Tucker分解,能够很好的保留空间和光谱相关
基于三维全变分和Tucker分解的低秩张量补全方法.pdf
基于三维全变分和Tucker分解的低秩张量补全方法,包括以下步骤:将破损视频读入MATLAB软件中,将其转化为三维张量,张量大小为,X×Y×Z,利用增广拉格朗日公式对求解的目标泛函进行优化处理,将混合目标泛函分解几个优化子问题,引入3个辅助变量,将其分解为独立的三部分,将三维加权差分算子引入到三维全变分约束中,保留三维张量的多因子结构,描述张量数据三维空间域的分段平滑结构;不断迭代更新引入的三个辅助变量以及需要修复的张量y,当达到最大迭代次数或者连续两次补全的张量y相对误差小于给定的参数值ε,则张量补全完
基于低秩表示与张量分解的高光谱降噪算法研究.docx
基于低秩表示与张量分解的高光谱降噪算法研究基于低秩表示与张量分解的高光谱降噪算法研究摘要:高光谱图像在许多领域中都扮演着重要的角色,然而,由于其复杂性和多变性,高光谱图像常常受到噪声的影响。因此,高光谱降噪算法成为了一个重要的研究领域。本文提出了一种结合低秩表示和张量分解的高光谱降噪算法。具体而言,我们先利用低秩表示方法对高光谱图像进行降维处理,然后再通过张量分解方法恢复原始图像。实验证明,所提出的算法能够有效地降低高光谱图像中的噪声,并保持图像的细节和颜色信息。1.引言高光谱图像是由多个连续的光谱波段构
基于图和低秩表示的张量分解方法及应用研究.docx
基于图和低秩表示的张量分解方法及应用研究本文主要探讨基于图和低秩表示的张量分解方法及其在应用领域中的研究情况。一、引言随着信息时代的到来,海量数据的处理和挖掘成为了一项重要的任务。在这个过程中,张量作为一种多维数组结构,被广泛地运用于数据分析、信号处理、计算机视觉等领域。然而,对张量的分解成为了一个研究热点。因为基于张量分解能够发现数据中的底层结构和模式,从而实现数据降维和信息提取,对于优化求解等问题有着广泛的应用前景。二、基于图和低秩表示的张量分解方法2.1基于图的张量分解方法基于图的张量分解方法可以看
基于张量字典及全变分的高维图像去噪方法.pdf
本发明公开一种基于张量字典及全变分的高维图像去噪方法,在高维图像处理研究的基础上,将张量字典学习结合全变分正则项,提出一种张量字典学习结合TV正则项的高维图像去噪模型,然后用交替迭代方法求解模型,得到迭代更新后重建的MSI图像。本发明的优点是将高维图像看成一个张量整体处理,不会损失图像的立体结构信息,同时也考虑了各波段之间的相关性,并且张量字典学习的方式提高了算法的精确度;在不失高维图像空间结构的前提下,利用高阶TV正则项,很好地保存了较完善的边缘信息,取得良好的重建效果。实验结果在主观视觉和客观评价指标