预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

6因式分解教材分析一、本节内容及地位、作用:本节内容是多项式因式分解中一部分较基本的知识和基本的方法.它包括因式分解的有关概念因式分解的常用基本方法.因式分解在代数学习中具有基础作用.它在代数的恒等变换分式的通分约分以及解方程方面都起着重要作用.通过学习可以培养学生的观察;分析;运算能力.这部分知识对学生后续学习将起到重要的基础作用.教学要求1.新教材中的基本要求(1)了解因式分解的意义及其与整式乘法之间的关系.(2)会用提公因式法公式法(平方差公式完全平方公式)对多项式进行因式分解.2.中考要求.(1)会用提公因式法公式法(直接用公式不超过两次)进行因式分解.(指数是正整数);能用因式分解的知识进行代数式的变形解决有关问题.(2)利用十字相乘法分解因式.3.教学中的较高要求针对教材内容结构要求的变化建议可根据学生具体情况再适当补充如下内容:*(1)立方和(差)公式;(2)简单的分组分解法以达到对基本方法的综合运用.三.本节课时安排:3节可依据实际情况补充2到3节.四、本节教学建议:1.落实好两个基本概念.(1)对因式分解的定义的理解在复习巩固整式乘法的基础上给出因式分解的定义.让学生体会到因式分解是对一个整式进行恒等的变形其书写形式与整式乘法恰好相反.对公因式定义的理解a.类比公因数理解多项式中公因式的概念它是学习提公因式法分解因式的关键.b.教学时应让学生认识到一个多项式中各项都含有的公共的因式才叫公因式.c.公因式找寻的方法可从:系数相同字母相同字母的指数最低值入手.d.公因式也可以是多项式因式.教学中注意对:与;与(为正整数)的认识.2.落实好两个基本的因式分解方法.(1)提公因式法分解因式.a.找准公因式b.能理解另一个因式的本质为原多项式除以公因式所得的商.例1.(1)把多项式分解因式结果正确的是()(2)下列变形是因式分解的是()例2.分解下列因式(1)(2)(3)(4)例3.(1)若求的值.(2)解方程说明:借助实例突出因式分解的意义注意与多项式乘法相区别力争防止学生出现进行因式分解过程中又返回去做整式的乘法的现象.(2)利用平方差公式完全平方公式法分解因式.a.理解每个公式的含义掌握每个公式的形式与特点.平方差公式:公式特点:公式左边的多项式形式上是二项式且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式;公式右边分解的结果是两个数的和与它们的差的积;公式中的字母可以表示为数字单项式多项式.完全平方公式:公式特点:公式左边是一个二次三项式;此二次三项式为两个数的完全平方和加上(或减去)这两个数乘积的2倍.右边是这两数的和(或差)的完全平方式.公式中的字母可以表示为数字单项式多项式.此节是因式分解的核心内容重点在于掌握公式的特点牢记公式形式;难点在于灵活运用公式.教学时可以让学生通过较充分的基本类型的练习记忆与运用公式.例4.分解下列因式(2)(3)(4)(5)例5.求下列代数式的值若求的值.若求的值.掌握好十字相乘法及简单的分组分解法十字相乘法在后续学习中应用非常广泛.虽然教材中仅在阅读部分出现但是在教学中可把握好如下几个层次:(1)熟练掌握首项系数为1的形如型的二次三项式的因式分解.(2).基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.(3).对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)对于四项的分组分解可根据学生情况适当补充.四项分组分解主要类型有:13分组法;22分组法.补充的意义在于对前面基本方法的复习巩固加深理解综合运用.例1.分解下列因式1.4.2.5.3.6.7.8.*9.*10.例2.分解下列因式1.6.2.7.3.8.4.9.5.10.例3.分解下列因式5.6.