预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号(10)申请公布号CNCN103607772103607772A(43)申请公布日2014.02.26(21)申请号201310658425.7(22)申请日2013.12.09(71)申请人青岛百灵信息科技有限公司地址266000山东省青岛市市北区洛阳路11号(72)发明人许萌沙启鑫(51)Int.Cl.H04W64/00(2009.01)权权利要求书1页利要求书1页说明书5页说明书5页附图1页附图1页(54)发明名称一种基于LMBP神经网络的泰勒定位算法(57)摘要本发明涉及一种基于LMBP神经网络的泰勒定位算法,所述LMBP神经网络模块对TDOA测量数据进行修正,减少TDOA测量值中的NLOS误差,泰勒定位算法接受经过LMBP神经网络修正过的测量数据作为初始输入数据,进行定位算法运算后得到系统定位结果,本发明算法效率高,准确度高,全面较好地决绝了对区域大小以及基站个数的完全依赖。本发明基站个数的增加并不敏感,因此对硬件的要求较为宽松。本发明增加了自我学习和提炼功能,可以有效的获得一套规律性的数据,减少无谓的计算量。CN103607772ACN103672ACN103607772A权利要求书1/1页1.一种基于LMBP神经网络的泰勒定位算法,其特征是:所述LMBP神经网络模块对TDOA测量数据进行修正,减少TDOA测量值中的NLOS误差,泰勒定位算法接受经过LMBP神经网络修正过的测量数据作为初始输入数据,进行定位算法运算后得到系统定位结果,具体算法步骤如下:1)通过基站对确定移动台的位置,作为目标数据,之后根据TDOA测量误差模型产生相应的测量数据,将模拟的测量数据分为两部分,其中一半用于训练神经网络,另一半用于性能仿真;2)建立和训练LMBP网络,以移动台的不含NLOS误差的TDOA为目标样本矢量对网络进行训练,具体LMBP人工神经网络算法基本流程就是:初始步:给出BP网络初始权值W0,u0,误差阀值E0,其中u0>0,E>0,并令k=0,第k次迭代:1)输入样本xK,计算gK,若‖gK‖<E,学习结束;否则计算HK,2)分解HK+uK,若不正定,置uK=4uK,并重复这一步直到HK+uK正定,3)解方程(HK+uK)s=-gK,得sK,4)求E(HK+sK),qK(sK),和rK,TTs这里qK(sK)=E(WK)+gKs+(1/2)sHK,5)若rK<0.25,置uK+1=4uK;若rK>0.75,置uK+1=uK/2;否则置uK+1=uK,6)若rK<=0,置换WK+1=WK;否则置WK+1=WK+SK,7)令K=K+1,转1),3)用训练好的LMBP网络对模拟的TDOA测量数据进行修正,利用修正后的TDOA值采用泰勒算法进行位置估算,泰勒级数展开算法是一种需要移动台初始估计位置的递归算法,在每一次递归中通过求解TDOA测量误差的局部最小二乘的解来改进对移动台的估计位置。2CN103607772A说明书1/5页一种基于LMBP神经网络的泰勒定位算法技术领域[0001]本发明涉及一种智能定位算法,具体涉及一种基于LMBP神经网络的泰勒定位算法。背景技术[0002]对于目前物流行业、医院以及通信行业,精确的定位功能被越来越多的受到关注,当然,随之产生的定位技术也多种多样。但是绝大多数的定位算法都对物理硬件有着较高的要求,比如在较近的范围内才适用,又或者必须有若干个基站的基础上才可以进行精确的物理定位等。[0003]常用的定位算法为泰勒序列展开定位算法,该算法在视距(LOS)环境下有着较好的定位精度,但是在非视距环境下,即NLOS环境下,泰勒序列展开定位算法的定位精度大大下降。Chan算法是一种基于TDOA技术、具有解析表达式解的定位算法,该算法的特点是计算量小,在噪声服从高斯分布的环境下,定位精度高。但在非视距(NLOS)环境下,Chan氏算法的定位精度也会有所下降。目前,在使用泰勒算法、Chan算法等进行定位的同时也会引入一些神经算法如:RBF神经网络。但是RBF神经网络容易造成“局部极小点”,这种情形是应该尽量避免发生的,并且该算法精度相对较低,且耗时长。缺乏自动学习的功能,增加了重复多次计算的负担,提取特征参数的方法复杂,参数较多,运算复杂且占用大量存储空间和时间,降低了识别效率。发明内容[0004]本发明克服了现有技术的不足,提出了一种基于LMBP神经网络的泰勒定位算法,使用人工智能中的LMBP神经网络。LMBP网络能学习和存储大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的收敛速度快、误差小而且避免了局部极小问题,所述算法利用LMBP神经网络较快的学习特性和逼近任意非线性映射的能力,对NLOS传播的误差进行