预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、下列图形为正多边形的是()A.B.C.D.2、如图四边形ABCD内接于⊙O点I是△ABC的内心∠AIC=124°点E在AD的延长线上则∠CDE的度数为()A.56°B.62°C.68°D.78°3、下列说法中正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径4、如图点AB的坐标分别为点C为坐标平面内一点点M为线段的中点连接则的最大值为()A.B.C.D.5、如图破残的轮子上弓形的弦AB为4m高CD为1m则这个轮子的半径长为()A.mB.mC.5mD.m6、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸7、下列多边形中内角和最大的是()A.B.C.D.8、以原点O为圆心的圆交x轴于A、B两点交y轴的正半轴于点CD为第一象限内⊙O上的一点若∠DAB=25°则∠OCD=().A.50°B.40°C.70°D.30°9、已知圆的半径为扇形的圆心角为则扇形的面积为()A.B.C.D.10、如图1一个扇形纸片的圆心角为90°半径为6.如图2将这张扇形纸片折叠使点A与点O恰好重合折痕为CD图中阴影为重合部分则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在中以点为圆心、为半径的圆交于点则弧AD的度数为________度.2、如图四边形ABCD为⊙O的内接正四边形△AEF为⊙O的内接正三角形连接DF.若DF恰好是同圆的一个内接正多边形的一边则这个正多边形的边数为_____.3、已知的半径为直线与相交则圆心到直线距离的取值范围是__________.4、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.5、如图在正五边形ABCDE中AC与BE相交于点F则∠AFE的度数为_____.三、解答题(5小题每小题10分共计50分)1、如图1正五边形内接于⊙阅读以下作图过程并回答下列问题作法:如图2①作直径;②以F为圆心为半径作圆弧与⊙交于点MN;③连接.(1)求的度数.(2)是正三角形吗?请说明理由.(3)从点A开始以长为半径在⊙上依次截取点再依次连接这些分点得到正n边形求n的值.2、如图在△ABC中AB=AC∠BAC=120°点D在边BC上⊙O经过点A和点B且与边BC相交于点D.(1)判断AC与⊙O的位置关系并说明理由.(2)当CD=5时求⊙O的半径.3、如图在Rt△ABC中∠ACB=90°∠BAC的平分线交BC于点OOC=1以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=求cosB的值.4、在平面直角坐标系中对于点给出如下定义:当点满足时称点Q是点P的等和点.已知点.(1)在中点P的等和点有______;(2)点A在直线上若点P的等和点也是点A的等和点求点A的坐标;(3)已知点和线段MN对于所有满足的点C线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5直接写出b的取值范围.5、如图点在上且以为圆心为半径作圆.(1)讨论射线与公共点个数并写出对应的取值范围;(2)若是上一点当时求线段与的公共点个数.-参考答案-一、单选题1、D【解析】【分析】根据正多边形的定义:各个角都相等各条边都相等的多边形叫做正多边形可得答案.【详解】根据正多边形的定义得到D中图形是正五边形.故选D.【考点】本题考查了正多边形关键是掌握正多边形的定义.2、C【解析】【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣