预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

"质数与合数"教学实录师:(电脑出示三个同样的小正方形)每个正方形的边长为1用这样的三个正方形拼成一个长方形你能拼出几个不同的长方形?学生独立思考--生1:我能拼出两个长方形。师:说说是怎样的两个长方形。生1:是横着的一个还有竖着的一个。师:横着的这个长方形的长是几?宽是几?生1:长是3、宽是1。师:还有一个呢?生1:还有一个长方形的长也是3、宽也是1。学生中发出"啊"的声音以表示不同意这种说法。有些学生帮助纠正说"长是1、宽是3"。师:这无关紧要反正长方形相邻的两条边一条叫长另一条就叫宽。师:同学们这两个长方形实质上是怎样的?生:实质上是同样的长方形只是放的位置不同。一个是横着放另一个是竖着放。师:是呀我觉得还可以斜着放。其实我们只能拼出一个长方形它的长是3、宽是(电脑演示:将三个同样的正方形拼成一个长方形接着出示了四个同样的小正方形。)师:这样的四个小正方形能拼出几个不同的长方形?学生各自独立思考、想像后举手回答。生1:一个。师:也只能拼出一个?请说出该长方形的长和宽。生1:长方形的宽是1、长是4。生2:我认为还有一个它的四边都是2。(话音刚落学生中议论开了--)生3:他说的是正方形我认为是对的。因为正方形是特殊的长方形。师:正方形也属于长方形是一种特殊的长方形所以用4个同样的小正方形可以拼出几个不同的长方形?(结合学生回答电脑演示出拼成的两个长方形。)师:同学们再想一下如果有12个小正方形你能拼出几个不同的长方形?【学生独立思考着过了一会儿有学生在纸上画了起来渐渐地越来越多的学生也拿出笔在纸上画了起来这是我未曾想到的。但为了尊重学生自己的思维方式我给出一定的时间让他们画。但是我又不能让学生将大量的时间花在画出所有不同的长方形上面。因为引导学生进行空间想像及利用长方形面积计算方法进行数学地思考促进思维的深入发展这才是更加重要的。于是我就进行教学调控。】师:我看到许多同学不用画就已经知道了。【我说这话的目的既起"暗示"作用--暗示学生不需将各个不同的长方形一一画出也有办法知道"能拼出几个不同的长方形";又起导向作用让学生思考其他的方法或策略。我这话还真见效一些学生立即停笔思考很快有许多学生积极地举着手。】生1:能拼出三个不同的长方形。师:是怎样的三个呢?生1:长是12、宽是1的还有长是6、宽是2的和长是4宽是3的三个不同的长方形。师:你们能想像出拼成的这些长方形吗?生2:第一种是把这12个正方形摆成了1排;第二种是每排6个摆2排;第三种是每排4个摆3排。师:同学们如果给出的正方形的个数越多那拼出的不同的长方形的个数--你觉得会怎么样?学生几乎是异口同声地说:会越多--师:(装作没听清楚)给出的正方形的个数越多拼出的长方形的个数你们是说--(同学们清楚又响亮地回答"越多"。)【此时教师一声不吭保持着沉默。课堂一下子沉静了下来。此时无声胜有声。同学们认真地思考着……又过了一会学生间开始有点"骚动"渐渐地一些学生高举着手--】生1:不一定的。师:(故意重复)他说不一定对吗?其他一些学生更加坚定而响亮地回答"对!"。师:说话得要有根据呀!学生的情绪更加激动--生:刚才四个正方形能排出两个如果用5个正方形只能排出1个。如果用潘老师的说法5个正方形排出的不同的长方形应该不止两个所以这话是错的。师:同学们听明白吗他说得好不好?(学生回答"好!")师:我觉得他说得还不太好他说"潘老师说的"我什么时候说过"小正方形个数越多拼出的长方形的个数也越多"这话这可是你们说的呀。不过你们觉得刚才这位同学举的例子好不好?生:好!师:一个例子就把你们刚才的结论给否定了。多有说服力的反例!师:同学们用小正方形拼长方形有时只能拼出一种有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候只能拼一种?学生思考着之后相互之间展开了热烈的讨论。生1:我觉得当小正方形的个数是奇数--(还没待该生说完有些学生便忍不住地打断他的发言。)师:慢!尊重人家让人家把话说完。生1:是奇数的时候。师:我们首先要学会尊重别人倾听别人的发言然后对他人的言作出自己的思考有不同意见的再与他人进行讨论。生2:我有反对意见。我想问××9是什么数?用9个小正方形能排出几个长方形?生1:9是奇数用9个小正形能排出两个长方形。我知道了当个数是奇数时也不一定只能摆出一个长方形。师:那该是什么数的时候呢?生3:如果小正方形的个数在除法里只能被1整除的话这些小正方形只能拼出一个长方形。例如是一个小正方形。师:用一个小正方形怎么去拼呢?生4:那零呢?零是可以被任何数