预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图在△ABC中∠ACB=90°AC=BCAB=4cmCD是中线点E、F同时从点D出发以相同的速度分别沿DC、DB方向移动当点E到达点C时运动停止直线AE分别与CF、BC相交于G、H则在点E、F移动过程中点G移动路线的长度为()A.2B.πC.2πD.π2、如图⊙O的半径为5弦AB=8P是弦AB上的一个动点(不与AB重合)下列符合条件的OP的值是()A.6.5B.5.5C.3.5D.2.53、如图一个油桶靠在直立的墙边量得并且则这个油桶的底面半径是()A.B.C.D.4、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°5、一个等腰直角三角形的内切圆与外接圆的半径之比为()A.B.C.D.6、如图、为的切线、为切点点为弧上一点过点作的切线分别交、于、若则的周长等于().A.B.C.D.7、如图在△ABC中AG平分∠CAB使用尺规作射线CD与AG交于点E下列判断正确的是()A.AG平分CDB.C.点E是△ABC的内心D.点E到点ABC的距离相等8、如图已知长方形中圆B的半径为1圆A与圆B内切则点与圆A的位置关系是()A.点C在圆A外点D在圆A内B.点C在圆A外点D在圆A外C.点C在圆A上点D在圆A内D.点C在圆A内点D在圆A外9、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.1110、已知中点P为边AB的中点以点C为圆心长度r为半径画圆使得点AP在⊙C内点B在⊙C外则半径r的取值范围是()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在一边长为的正六边形中分别以点AD为圆心长为半径作扇形扇形则图中阴影部分的面积为___________.(结果保留)2、如图I是△ABC的内心∠B=60°则∠AIC=_____.3、已知圆锥的高为4cm母线长为5cm则圆锥的侧面积为_____cm2.4、如图AB是⊙O的直径弦CD⊥AB于点E.若AB=10AE=1则弦CD的长是_____.5、如图已知正六边形ABCDEF的边长为2对角线CF和BE相交于点N对角线DF与BE相交于点M则MN=_____.三、解答题(5小题每小题10分共计50分)1、如图∠BAC的平分线交△ABC的外接圆于点D∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°BD=4求△ABC外接圆的半径.2、如图为的直径为上一点和过点的切线互相垂直垂足为.(1)求证:平分;(2)若试求的半径.3、如图所示四边形ABCD的顶点在同一个圆上另一个圆的圆心在AB边上且该圆与四边形ABCD的其余三条边相切.求证:.4、如图在平面直角坐标系中抛物线过点与y轴交于点C连接BC点N是第一象限抛物线上一点连接NA交y轴于点E.(1)求抛物线的解析式;(2)求线段AN的长;(3)若点M在第三象限抛物线上连接MN则这时点M的坐标为______(直接写出结果).5、我们知道与三角形各边都相切的圆叫做三角形的内切圆则三角形可以称为圆的外切三角形.如图1与的三边分别相切于点则叫做的外切三角形.以此类推各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边ABBCCDDA分别相切于点则四边形叫做的外切四边形.(1)如图2试探究圆外切四边形的两组对边与之间的数量关系猜想:(横线上填“>”“<”或“=”);(2)利用图2证明你的猜想(写出已知求证证明过程);(3)用文字叙述上面证明的结论:;(4)若圆外切四边形的周长为相邻的三条边的比为求此四边形各边的长.-参考答案-一、单选题1、D【解析】【分析】【详解】解:如图∵CA=CB∠ACB=90°AD=DB∴CD⊥AB∴∠ADE=∠CDF=90°CD=AD=DB在△ADE和△CDF中∴△ADE≌△CDF(SAS)∴∠DAE=∠DCF∵∠AED=∠CEG∴∠ADE=∠CGE=90°∴A、C、G、D四点共圆∴点G的运动轨迹为弧CD∵AB=4ABAC∴AC=