预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图△ABC内接于⊙O∠A=50°.E是边BC的中点连接OE并延长交⊙O于点D连接BD则∠D的大小为()A.55°B.65°C.60°D.75°2、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.3、如图在△ABC中AG平分∠CAB使用尺规作射线CD与AG交于点E下列判断正确的是()A.AG平分CDB.C.点E是△ABC的内心D.点E到点ABC的距离相等4、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°5、如图、为⊙O的切线切点分别为A、B交于点C的延长线交⊙O于点D.下列结论不一定成立的是()A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线6、一个等腰直角三角形的内切圆与外接圆的半径之比为()A.B.C.D.7、下列图形为正多边形的是()A.B.C.D.8、一个点到圆的最大距离为11cm最小距离为5cm则圆的半径为()A.16cm或6cmB.3cm或8cmC.3cmD.8cm9、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定10、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图中长为将绕点A逆时针旋转至则边扫过区域(图中阴影部分)的面积为________.2、已知的半径为直线与相交则圆心到直线距离的取值范围是__________.3、如图是的直径弦于点E则的半径_______.4、如图在中半径是半径上一点且.是上的两个动点是的中点则的长的最大值等于__________.5、如图四边形是正方形曲线是由一段段90度的弧组成的.其中:的圆心为点A半径为;的圆心为点B半径为;的圆心为点C半径为;的圆心为点D半径为;…的圆心依次按点ABCD循环.若正方形的边长为1则的长是_________.三、解答题(5小题每小题10分共计50分)1、如图直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0m)B(n7).(1)填空:m=n=抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后直线l与抛物线C仍有公共点求a的取值范围.(3)Q是抛物线上的一个动点是否存在以AQ为直径的圆与x轴相切于点P?若存在请求出点P的坐标;若不存在请说明理由.2、(1)如图①在△ABC中AB=4AC=3若AD平分∠BAC交于点那么点到的距离为.(2)如图②四边形内接于为直径点B是半圆的三等分点(弧弧)连接若平分且求四边形的面积.(3)如图③为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮其中一块圆形场地圆O设计人员准备在内接四边形ABCD区域内进行花卉图案设计其余部分方便游客参观按照设计要求四边形ABCD满足∠ABC=60°AB=AD且AD+DC=10(其中)为让游客有更好的观体验四边形ABCD花卉的区域面积越大越好那么是否存在面积最大的四边形ABCD?若存在求出这个最大值不存在请说明理由.3、在中已知⊙O经过点C且与相切于点D.(1)在图中作出⊙O;(要求:尺规作图不写作法保留作图痕迹)(2)若点D是边上的动点设⊙O与边、分别相交于点E、F求的最小值.4、我们知道与三角形各边都相切的圆叫做三角形的内切圆则三角形可以称为圆的外切三角形.如图1与的三边分别相切于点则叫做的外切三角形.以此类推各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边ABBCCDDA分别相切于点则四边形叫做的外切四边形.(1)如图2试探究圆外切四边形的两组对边与之间的数量关系猜想:(横线上填“>”“<”或“=”);(2)利用图2证明你的猜想(写出已知求证证明过程);(3)用文字叙述上面证明的结论