预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

7考点集训(十二)第12讲函数与方程对应学生用书p214A组题1.函数f(x)=ex+x2-2在区间(-21)内零点的个数为()A.1B.2C.3D.4[解析]令ex+x2-2=0得ex=-x2+2画出y=exy=-x2+2的图象如下图所示由图可知图象有两个交点故原函数有2个零点.[答案]B2.函数f(x)=ln(-x)-eq\f(13)x-2的零点所在区间为()A.(-4-3)B.(-3-e)C.(-e-2)D.(-2-1)[解析]f(-4)=ln4-eq\f(23)>0f(-3)=ln3-1>0f(-e)=-1+eq\f(e3)<0f(-2)=ln2-eq\f(43)<0f(-1)=-eq\f(53)<0由零点存在性定理f(-3)f(-e)<0所以零点所在区间为(-3-e).[答案]B3.若方程x2+ax+a=0的一根小于-2另一根大于-2则实数a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(4+∞))B.eq\b\lc\(\rc\)(\a\vs4\al\co1(04))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞0))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞0))∪eq\b\lc\(\rc\)(\a\vs4\al\co1(4+∞))[解析]令feq\b\lc\(\rc\)(\a\vs4\al\co1(x))=x2+ax+a方程x2+ax+a=0的一根小于-2另一根大于-2则feq\b\lc\(\rc\)(\a\vs4\al\co1(-2))=4-2a+a=4-a<0解得a>4.[答案]A4.设f(x)=3ax-2a+1若存在x0∈(-11)使f(x0)=0则实数a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(-1\f(15)))B.(-∞-1)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞-1))∪eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(15)+∞))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(15)+∞))[解析]∵f(x)=3ax-2a+1所以函数有且只有一个零点若存在x0∈(-11)使f(x0)=0则f(-1)·f(1)<0即(-3a-2a+1)·(3a-2a+1)<0即(-5a+1)·(a+1)<0解得a<-1或a>eq\f(15)故实数a的取值范围是eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞-1))∪eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(15)+∞)).[答案]C5.已知函数f(x)=2x+xg(x)=log3x+xh(x)=x-eq\f(1\r(x))的零点依次为abc则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c[解析]在同一平面直角坐标系下分别画出函数y=2xy=log3xy=-eq\f(1\r(x))y=-x的图象如图观察它们与y=-x的交点可知a<b<c.[答案]A6.关于x的方程coseq\f(πx2)-lg|x|=0的实数根个数为()A.6B.8C.10D.12[解析]coseq\f(πx2)-lg|x|=0即coseq\f(πx2)=lg|x|令y1=coseq\f(πx2)y2=lg|x|如图画出y1y2的图象结合图象可得y1与y2有10个交点∴方程coseq\f(πx2)-lg|x|=0的实数根个数为10个.[答案]C7.已知函数f(x)=eq\b\lc\{(\a\vs4\al\co1(|x|x≤mx2-2mx+4mx>m))其中m>0若存在实数b使得关于x的方程f(x)=b有三个不同的根则m的取值范围是__________.[解析]函数y=|x|为偶函数且左减右增.函数y=x2-2mx+4m(x>m)图象的对称轴为x=m且在对称轴右侧单调递增.故当x≤m时函数f(x)先减后增当x>m时函数f(x)单调递增画出函数f(x)的大致图象如图所示要使f(x)=b有三个不同的根则必须满足m>m2-2m2+4m解得m>3.[答案](3+∞)8.已知函数f(x)=|x2+3x|x∈R若方程f(x)-a|x-1|=0恰有4个互异的实数根则实数a的取值范围是____________________.[解析]设y1=f(x)=|x2+3x|y2=a|x-1|在同一直角坐标系中作出y1=|x2+3x|y2=a|x-1|的图象