预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、下列多边形中内角和最大的是()A.B.C.D.2、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个3、如图在▱ABCD中为的直径⊙O和相切于点E和相交于点F已知则的长为()A.B.C.D.24、如图在等腰Rt△ABC中AC=BC=点P在以斜边AB为直径的半圆上M为PC的中点.当点P沿半圆从点A运动至点B时点M运动的路径长是()A.πB.πC.πD.25、如图拱桥可以近似地看作直径为250m的圆弧桥拱和路面之间用数根钢索垂直相连其正下方的路面AB长度为150m那么这些钢索中最长的一根的长度为()A.50mB.40mC.30mD.25m6、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.117、已知扇形的圆心角为半径为则弧长为()A.B.C.D.8、下列图形为正多边形的是()A.B.C.D.9、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的侧面和底面则的长为()A.B.C.D.10、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.2第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图是四个全等的正八边形和一个正方形拼成的图案已知正方形的面积为4则一个正八边形的面积为____.2、一个扇形的弧长是面积是则这个扇形的圆心角是___度.3、如图在中∠ABC=90°∠A=58°AC=18点D为边AC的中点.以点B为圆心BD为半径画圆弧交边BC于点E则图中阴影部分图形的面积为______.a4、如图AB为△ADC的外接圆⊙O的直径若∠BAD=50°则∠ACD=_____°.5、如图1将一个正三角形绕其中心最少旋转所得图形与原图的重叠部分是正六边形;如图2将一个正方形绕其中心最少旋转45°所得图形与原图形的重叠部分是正八边形;依此规律将一个正七边形绕其中心最少旋转______所得图形与原图的重叠部分是正多边形.在图2中若正方形的边长为则所得正八边形的面积为_______.三、解答题(5小题每小题10分共计50分)1、如图在四边形中.是四边形内一点且.求证:(1);(2)四边形是菱形.2、已知四边形内接于⊙O垂足为E垂足为F交于点G连接.(1)求证:;(2)如图1若求⊙O的半径;(3)如图2连接交于点H若试判断是否为定值若是求出该定值;若不是说明理由.3、如图所示四边形ABCD的顶点在同一个圆上另一个圆的圆心在AB边上且该圆与四边形ABCD的其余三条边相切.求证:.4、如图是的直径点是上一点点是延长线上一点是的弦.(1)求证:直线是的切线;(2)若求的半径;(3)若于点点为上一点连接请找出之间的关系并证明.5、已知:如图在⊙O中AB为弦C、D两点在AB上且AC=BD.求证:.-参考答案-一、单选题1、D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形其内角和为180°;B、是一个四边形其内角和为360°;C、是一个五边形其内角和为540°;D、是一个六边形其内角和为720°;∴内角和最大的是六边形;故选D.【考点】本题主要考查多边形内角和熟练掌握多边形内角和公式是解题的关键.2、A【解析】【分析】根据等弧的定义、弦的定义、弧的定义、分别判断后即可确定正确的选项.【详解】解:(1)长度相等的弧不一定是等弧弧的度数必须相同故错误;(2)直径是圆中最长的弦故(2)错误(4)正确;(3)同圆或等圆中劣弧一定比优弧短故错误;正确的只有一个故选:A.【考点】本题考查了圆的有关定义能够了解圆的有关知识是解答本题的关键难度不大.3、C【解析】【分析】首先求出圆心角∠EOF的度数再根据弧长公式即可解决问题.【详解】解:如图连接OE、OF∵CD是⊙O的切线∴OE⊥CD∴∠OED=90°∵四边形ABCD是平行四边形∠C=60°∴∠A=∠C=60°∠D=120°∵OA=OF∴∠A=∠OFA=60°∴∠DFO=120°∴∠EOF=36