预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图是一圆锥的侧面展开图其弧长为则该圆锥的全面积为A.60πB.85πC.95πD.169π2、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.3、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.4、已知扇形的圆心角为半径为则弧长为()A.B.C.D.5、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.6、如图矩形中分别是边上的动点以为直径的与交于点.则的最大值为().A.48B.45C.42D.407、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的底面和侧面则圆锥的表面积为()A.B.C.D.8、如图AB是⊙O的直径BC与⊙O相切于点BAC交⊙O于点D若∠ACB=50°则∠BOD等于()A.40°B.50°C.60°D.80°9、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸10、在平面直角坐标系xOy中已知点A(43)以原点O为圆心5为半径作⊙O则()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与⊙O的位置关系无法确定第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图直线y=﹣x+6与x轴、y轴分别交于A、B两点点P是以C(﹣10)为圆心1为半径的圆上一点连接PAPB则△PAB面积的最大值为_____.2、如图把一个圆锥沿母线OA剪开展开后得到扇形AOC已知圆锥的高h为12cmOA=13cm则扇形AOC中的长是_____cm(计算结果保留π).3、如图在中半径是半径上一点且.是上的两个动点是的中点则的长的最大值等于__________.4、如图正五边形ABCDE内接于⊙O点F在上则∠CFD=_____度.5、用反证法证明:“如果两条直线都和第三条直线平行那么这两条直线也互相平行”.第一步应假设:______.三、解答题(5小题每小题10分共计50分)1、已知:如图、是的切线切点分别是、为上一点过点作的切线交、于、点已知求的周长.2、如图⊙O的半径弦AB于点C连结AO并延长交⊙O于点E连结EC.已知.(1)求⊙O半径的长;(2)求EC的长.3、用反证法证明:一条线段只有一个中点.4、在中已知⊙O经过点C且与相切于点D.(1)在图中作出⊙O;(要求:尺规作图不写作法保留作图痕迹)(2)若点D是边上的动点设⊙O与边、分别相交于点E、F求的最小值.5、如图在Rt△ABC中∠ACB=90°∠BAC的平分线交BC于点OOC=1以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=求cosB的值.-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面圆的半径为r扇形的半径为R先根据弧长公式得到=10π解得R=12再利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到2π•r=10π解得r=5然后计算底面积与侧面积的和.【详解】设圆锥的底面圆的半径为r扇形的半径为R根据题意得=10π解得R=122π•r=10π解得r=5所以该圆锥的全面积=π•52+•10π•12=85π.故选B.【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.2、A【解析】【分析】连接CD、OE根据题意证明四边形OCED是菱形然后分别求出扇形OCD和菱形OCED以及△AOB的面积最后利用割补法求解即可.【详解】解:连接CD、OE由题意可知OC=OD=CE=ED弧=弧∴S扇形ECD=S扇形OCD四边形OCED是菱形