预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

5.1认识一元一次方程教学目标1.体会解决问题的一种重要的思想方法----尝试检验法.2.理解等式的两个性质并初步学会利用等式的两个性质解一元一次方程.教学重点和难点重点:用尝试检验法求方程的解.难点:利用等式的两个性质解一元一次方程.教学准备:天平和砝码教学过程复习引入什么叫方程?什么叫一元一次方程?你能写出一个一元一次方程吗?(让学生回答教师在黑板上板书其他学生帮忙纠正)3.[练一练]请你运用已学的知识根据下列问题中的条件分别列出方程:⑴奥运冠军朱启南在雅典奥运会男子10米气步枪决赛中最后两枪的平均成绩为10.4环其中第10枪(即最后一枪)的成绩为10.1环问第9枪的成绩是多少环?设第9枪的成绩为x环可列出方程。⑵国庆期间“时代广场”搞促销活动小颖的姐姐买了一件衣服按8折销售的售价为72元问这件衣服的原价是多少元?设这件衣服的原价为x元可列出方程。二、交流对话自主探索在小学里我们还知道使方程左右两边的值相等的未知数的值叫做方程的解。你们知道“练一练”第⑴题的方程EQ\F(x+10.12)=10.4的解吗?你们是怎么得到的?(让学生各抒己见只要学生能说出该方程的解教师都应给予积极的鼓励。)强调:我们知道x只能取10.510.610.710.810.9。把这些值分别代入方程左边的代数式EQ\F(x+10.12)求出代数式的值就可以知道x=10.7是方程EQ\F(x+10.12)=10.4的解。这种尝试检验的方法是解决问题的一种重要的思想方法。[做一做]:⒈判断下列t的值是不是方程2t+1=7-t的解:⑴t=-2;⑵t=2.追问:你能否写出一个一元一次方程使它的解是t=-2?⒉解方程:⑴x-2=8;⑵5y=8.(让学生思考解法只要合理均以鼓励。)除了这些方法还有没有更好的方法呢?如果方程比较复杂怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。三、理解并运用(一)实验如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一那么天平还保持平衡吗?教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。(二)归纳等式的两个性质⒈等式两边同时加上(或减去同一个代数式所得结果仍是等式。⒉等式两边同时乘以同一个数(或除以同一个不为0的数)所得结果仍是等式。说明:课本指出:“在小学我们还学过等式的两个性质”但目前小学生尚未学过或未正式学过等式的两个性质。所以在此对等式的性质先作一番介绍。(三)解方程例⒈利用等式的性质解下列方程:⑴x+2=5;⑵3=x-5.(学生已经用其他方法求解过这两个方程这里是用等式的性质来解方程.可先让学生自己尝试利用等式的性质进行求解教师再加以引导。)例⒉解下列方程:⑴-3x=15;⑵-n/3–2=10.(教学时首先应鼓励学生自己尝试求解这两个方程并从中体会运用等式的性质解方程的方法然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式。并引导学生回顾检验的方法鼓励他们养成检验的习惯)检验方法:把求出的解代入原方程看看左右两边是否相等。[想一想]:现在你能帮小彬解开上节课的那个谜吗?(四)[做一做]:课本随堂练习1、2四、小结回顾[说一说]:通过上面的学习你有什么收获?另外你有什么感触?五、布置作业1.课本习题5.2知识技能1。