预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《高等数学复习》教程 第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质)1.(等价小量与洛必达) 2.已知 解: (洛必达) 3.(重要极限) 4.已知a、b为正常数, 解:令 (变量替换) 5. 解:令 (变量替换) 6.设连续,,求 (洛必达与微积分性质) 7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 3.(洛必达与微积分性质) 第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法 A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则B.曲线切法线问题4.求对数螺线处切线的直角坐标方程。 解: 5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域 8.求函数的单调性与极值、渐进线。 解:,D.幂级数展开问题9. 或: 10.求 解: =E.不等式的证明11.设, 证:1)令 2)令F.中值定理问题12.设函数具有三阶连续导数,且, ,求证:在(-1,1)上存在一点 证: 其中 将x=1,x=-1代入有 两式相减: 13.,求证: 证: 令 令 (关键:构造函数) 三、补充习题(作业) 1. 2.曲线 3. 4.证明x>0时 证:令 第三讲不定积分与定积分 一、理论要求 1.不定积分掌握不定积分的概念、性质(线性、与微分的关系) 会求不定积分(基本公式、线性、凑微分、换元技巧、分部)2.定积分理解定积分的概念与性质 理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分 会用定积分求几何问题(长、面、体) 会用定积分求物理问题(功、引力、压力)及函数平均值 二、题型与解法 A.积分计算1. 2. 3.设,求 解: 4.B.积分性质5.连续,,且,求并讨论在的连续性。 解: 6. C.积分的应用7.设在[0,1]连续,在(0,1)上,且,又与x=1,y=0所围面积S=2。求,且a=?时S绕x轴旋转体积最小。 解: 8.曲线,过原点作曲线的切线,求曲线、切线与x轴所围图形绕x轴旋转的表面积。 解:切线绕x轴旋转的表面积为 曲线绕x轴旋转的表面积为 总表面积为 三、补充习题(作业) 1. 2. 3. 第四讲向量代数、多元函数微分与空间解析几何 一、理论要求 1.向量代数理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示2.多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质 理解偏导数、全微分概念 能熟练求偏导数、全微分 熟练掌握复合函数与隐函数求导法3.多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4.空间解析几何掌握曲线的切线与法平面、曲面的切平面与法线的求法 会求平面、直线方程与点线距离、点面距离 二、题型与解法 A.求偏导、全微分1.有二阶连续偏导,满足,求 解: 2. 3.,求B.空间几何问题4.求上任意点的切平面与三个坐标轴的截距之和。 解: 5.曲面在点处的法线方程。C.极值问题6.设是由确定的函数,求的极值点与极值。 三、补充习题(作业) 1. 2. 3. 第五讲多元函数的积分 一、理论要求 1.重积分熟悉二、三重积分的计算方法(直角、极、柱、球)