预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整word)现代电力系统分析课程设计 (完整word)现代电力系统分析课程设计 (完整word)现代电力系统分析课程设计 一、课程设计的目的与要求 目的:培养学生的电力系统潮流计算机编程能力,掌握计算机潮流计算的相关知识 要求:基本要求: 1。编写潮流计算程序; 2.在计算机上调试通过; 3。运行程序并计算出正确结果; 4.写出课程设计报告 二、设计步骤: 1.根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3。运用计算机进行潮流计算。 4.编写设计说明书. 三、设计原理 牛顿—拉夫逊法潮流计算简介 牛顿迭代法(Newton’smethod)又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要.方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根. 设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0)f'(x0)(x—x0),求出L与x轴交点的横坐标x1=x0-f(x0)/f’(x0),称x1为r的一次近似值。过点(x1,f(x1))作曲线y=f(x)的切线,并求该切线与x轴的横坐标x2=x1-f(x1)/f’(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数f(x)=f(x0)+(x-x0)f'(x0)+(x-x0)^2*f'’(x0)/2!+…取其线性部分,作为非线性方程f(x)=0的近似方程,即泰勒展开的前两项,则有f(x0)+f’(x0)(x-x0)=f(x)=0设f'(x0)≠0则其解为x1=x0-f(x0)/f’(x0)这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f’(x(n))。 2.牛顿-—拉夫逊法潮流计算计算公式 把牛顿法用于潮流计算,采用直角坐标形式表示的如式(2)所示的形式。其中电压和支路导纳可表示为: (1) 将上述表示式(1)代入(1-1)式的右端,展开并分出实部和虚部,便得: (2) 按照以上的分类,PQ节点的输出有功功率和无功功率是给定的,则第i节点的给定功率设为和(称为注入功率)。 假定系统中的第1、2、…、m节点为PQ节点,对其中每一个节点的N-R法表达式F(x)=0[如、、]形式有些下列方程: (3) =(1、2、…、m) PV节点的有功功率和节点电压幅值是给定的。假定系统中的第m+1、m+2、…、n—1节点为PV节点,则对其中每一PV节点可以列写方程: (4) =(m+1、m+2、…、n-1) 形成雅可比矩阵。N—R法的思想是;本例;对F(x)求偏导的式中的、、是多维变量的函数,对多维变量求偏导(、、、、、、、…),并以矩阵的形式表达称为雅可比矩阵。 当j=i时,对角元素为 (5) 当时,矩阵非对角元素为: (6) 3。牛顿-拉夫逊法解题的一般步骤 以下讨论的是用直角坐标形式的牛顿—拉夫逊法潮流的求解过程。当采用直角坐标时,潮流问题的待求量为各节点电压的实部和虚部两个分量由于平衡节点的电压向量是给定的,因此待求共需要2(n-1)个方程式.事实上,除了平衡节点的功率方程式在迭代过程中没有约束作用以外,其余每个节点都可以列出两个方程式。 (7) 对PQ节点来说,给定的,因而可以写出 (8) (9) 三、matlab原理 Matlab是“MatrixLaboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 四、设计内容 设计流程图 程序 clc clear disp('节点总数为:'); N=5 disp('平衡节点为:'); 1 disp('PQ节点为:’); JD=[2,3,4,5] G=[6。2500,-5.0000,—1.2500,0,0;—5。0000,10