预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共57页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

层次分析法AHP§1.1引言与引例人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。层次分析法在经济、科技、文化、军事、环境乃至社会发展等方面的管理决策中都有广泛的应用。 常用来解决诸如综合评价、选择决策方案、估计和预测、投入量的分配等问题。引例:综合评价其中 x1=写作水平,x2=外语程度, x3=公关能力,x4=国内外政治经济时事, x5=计算机操作知识,x6=容貌与风度, x7=体形高矮与肥瘦,x8=音色。如能知道底层指标x1,…,x8对最高层的权系数w1,…,w8以及各底层指标的得分,就可以按照如下的评价公式引例:综合决策决策的制定将取决于根据这两个层次结构确定的方案的效益权重与代价权重之比,即如能知道底层方案Di(i=1,2,3)对最高层Aj(j=1,2)的权系数wij(i=1,2,3,j=1,2),则可根据如下的决策公式 Si=wi1/wi2,i=1,2,3 对三个方案进行排序、选择。引例:预测或估计如能知道底层指标x1,x2,x3对最高层的权系数w1j,w2j,w3j(j=1,2,3),将各相同前景的权系数相加,就可以按照如下的预测公式引例:投入量的分配§1.2层次分析法的基本原理和步骤§1.2.1建立递阶层次结构 建立递阶层次结构是层次分析法中的第一步。首先,将复杂问题分解为称之为元素的各组成部分,把这些元素按属性不同分成若干组,以形成不同层次。同一层次的元素作为准则,对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。这种从上至下的支配关系形成了一个递阶层次。处于最上面的的层次通常只有一个元素,一般是分析问题的预定目标或理想结果。中间层次一般是准则、子准则。最低一层包括决策的方案。层次之间元素的支配关系不一定是完全的,即可以存在这样的元素,它并不支配下一层次的所有元素。一个典型的层次可以用下图表示出来:其次,层次数与问题的复杂程度和所需要分析的详尽程度有关。每一层次中的元素一般不超过9个,因一层中包含数目过多的元素会给两两比较判断带来困难。 第三,一个好的层次结构对于解决问题是极为重要的。层次结构建立在决策者对所面临的问题具有全面深入的认识基础上,如果在层次的划分和确定层次之间的支配关系上举棋不定,最好重新分析问题,弄清问题各部分相互之间的关系,以确保建立一个合理的层次结构。一个递阶层次结构应具有以下特点: (1)从上到下顺序地存在支配关系,并用直线段表示。除第一层外,每个元素至少受上一层一个元素支配,除最后一层外,每个元素至少支配下一层次一个元素。上下层元素的联系比同一层次中元素的联系要强得多,故认为同一层次及不相邻元素之间不存在支配关系。 (2)整个结构中层次数不受限制。 (3)最高层只有一个元素,每个元素所支配的元素一般不超过9个,元素多时可进一步分组。 (4)对某些具有子层次的结构可引入虚元素,使之成为递阶层次结构。§1.2.2构造两两比较判断矩阵对于大多数社会经济问题,特别是对于人的判断起重要作用的问题,直接得到这些元素的权重并不容易,往往需要通过适当的方法来导出它们的权重。 层次分析法所用的是两两比较的方法。第一,在两两比较的过程中,决策者要反复回答问题:针对准则Ck,两个元素Ai和Aj哪一个更重要一些,重要多少。需要对重要多少赋予一定的数值。这里使用1—9的比例标度,它们的意义见表。表1.3.1标度的意义例如,准则是社会经济效益,子准则可分为经济、社会和环境效益。如果认为经济效益比社会效益明显重要,它们的比例标度取5,而社会效益对于经济效益的比例标度则取1/5。19的标度方法是将思维判断数量化的一种好方法。首先,在区分事物的差别时,人们总是用相同、较强、强、很强、极端强的语言。再进一步细分,可以在相邻的两级中插入折衷的提法,因此对于大多数决策判断来说,19级的标度是适用的。其次,心理学的实验表明,大多数人对不同事物在相同程度属性上差别的分辨能力在59级之间,采用19的标度反映多数人的判断能力。再次,当被比较的元素其属性处于不同的数量级时,一般需要将较高数量级的元素进一步分解,这可保证被比较元素在所考虑的属性上有同一个数量级或比较接近,从而适用于19的标度。第二,对于n个元素A1,…,An来说,通过两两比较,得到两两比较判断矩阵A: A=(aij)nn 其中判断矩阵具有如下性质: (1)aij>0; (2)aij=1/aji; (3)aii=1。 我们称A为正的互反矩阵。 根据性质(2)和(3),事实上,对于n阶判断矩阵