预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

什么是半导体材料?半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。 半导体的这四个效应,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。半导体的主要特性: 电阻率:10-3≤ρ≤109 负的电阻率温度系数,电阻是随着温度的上升而降低 通常具有很高的热电势 整流效应 光敏特性,能产生光伏效应或光电导效应 霍尔效应半导体材料的早期应用晶体管的发明巴丁和布尔吞在保密了将近半年后才公布了他们的发明,发明公布以后,当时的反应并不如期望的热烈。《纽约时报》将这个消息放在了第46版收音机谈话的最后,只有短短的几句话;当时的学术杂志对此也不是非常热衷。 由于当时的反应并不是他们想象的那样强烈,所以在1952年的4月份,为了推广他们的这个发明,又再次举办了公众听证会,就是想把他们的研究成果公布于企业界。当时他们邀请了美国众多做真空管的公司,每一个公司只需交纳25000美元就可以参加这个听证会,而且给予的许诺是如果将来要是采用了他的技术,听这个报告会的25000美元入场费可以从中扣除。当时大概有几十家公司参加了听证会,然而大多数的人都是做真空管的,他们对半导体晶体管的意义不以为然,不是非常感兴趣。试想如果晶体管的发明得到了成功应用,那么真空管就会慢慢的消失了。所以从这个角度看,他们的热情不高也是可以理解的。 但是科学界对这个发明还是给予了很高的评价,1956年,巴丁、布尔吞和肖克莱三人被授予诺贝尔物理学奖。 但今日来看,晶体管的发明不仅引起了电子工业的革命,而是彻底的改变了我们人类的生产、生活方式。我们今天日常所用的电器几乎没有一样不用晶体管,如通信、电脑、电视、航天、航空等等。 硅单晶及其外延硅的直径为什么不是按8英寸、10英寸、12英寸、14英寸发展,而是从8到12英寸,由12到18英寸,18到27英寸发展呢?硅集成电路的发展遵循《摩尔定律》,所谓《摩尔定律》就是每18个月集成电路的集成度增加一倍,而它的价格也要降低一半。 随着硅的直径增大,杂质氧等杂质在硅锭和硅片中的分布也变得不均匀,这将严重的影响集成电路的成品率,特别是高集成度电路。为避免氧的沉淀带来的问题,可采用外延的办法解决。 外延即用硅单晶片为衬底,然后在其上通过气相反应方法再生长一层硅,如2个微米,1个微米,或0.5个微米厚等。这一层外延硅中的氧含量就可以控制到1016/cm3以下,器件和电路就做在外延硅上,而不是原来的硅单晶上,这样就可解决由氧导致的问题。尽管成本将有所提高,但集成电路的集成度和运算速度都得到了显著提高,这是目前硅技术发展的一个重要方向。硅微电子技术随着集成电路线宽的进一步减小,硅微电子技术必然要遇到许多难以克服的问题 比如说长度为100个纳米的源和漏电极之间,掺杂原子也只有100个左右,如何保证这100个原子在成千上万个器件里的分布保持一致,显然是不可能的,至少也是非常困难的。也就说杂质原子分布的涨落,将导致器件性能不一,性质的不一致,就难保证电路的正常工作。 又如MOS器件的栅极下面的绝缘层就是二氧化硅,它的厚度随着器件尺寸的变小而变小,当沟道长度达到0.1个微米时,SiO2的厚度大概也在一个纳米左右。尽管上面加的栅电压很低,如一个纳米上加0.5伏或者是一伏电压,但是加在其上的电场强度就要达到每厘米5-10兆伏以上,超过了材料的击穿电压。当这个厚度非常薄的时候,即使不发生击穿,电子隧穿的几率也很高,将导致器件无法正常工作。 随着集成电路集成度的提高,芯片的功耗也急剧增加,使其难以承受;现在电脑CPU的功耗已经很高,如果说将来把它变成“纳米结构”,即不采用新原理,只是按《摩尔定律》走下去,进一步提高集成度,那么加在它上面的功耗就有可能把硅熔化掉。