预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Dirichlet过程混合模型聚类的GPU实现和优化 Title:GPUImplementationandOptimizationofDirichletProcessMixtureModelClustering Abstract: Dirichletprocessmixturemodels(DPMM)havegainedsignificantattentioninthefieldofmachinelearningfortheirabilitytoflexiblyclusterdatawithoutrequiringanapriorifixednumberofclusters.However,thecomputationalcomplexityofDPMMsposeschallengesforlarge-scaledataclusteringtasks.Inthispaper,weproposeaGPUimplementationandoptimizationapproachforDPMMclusteringtoleveragethecomputationalpowerofGPUsandimprovethescalabilityandefficiencyofclusteringalgorithms.Wedemonstratetheeffectivenessandefficiencyofourapproachthroughexperimentsonvariousdatasets. 1.Introduction: Clusteringisanessentialtaskinmachinelearninganddataminingapplications.TheDirichletprocessmixturemodel(DPMM)isanon-parametricclusteringtechniquethatoffersadvantagesoverfixed-sizeclusteringmethodsbyautomaticallydeterminingthenumberofclustersfromthedata.However,thecomputationalcomplexityofDPMMsmakesthemcomputationallydemandingforlargedatasets.Inthispaper,wepresentaGPUimplementationandoptimizationofDPMMclusteringtoaddressthesechallenges. 2.BackgroundandRelatedWork: WeprovideanoverviewofDPMMsandexistingapproachesfortheirimplementationonCPUs.WealsodiscussrelatedworkonGPUaccelerationofclusteringalgorithmsandhighlighttheneedtoexploreGPUoptimizationtechniquesforDPMMclustering. 3.GPUImplementationofDPMMClustering: WedescribeourGPUimplementationofDPMMclustering,focusingonthekeycomponentsofthealgorithmthatareamenabletoparallelizationonGPUs.WediscusstheconsiderationsfordatatransferbetweenCPUandGPU,GPUmemorymanagement,andparallelizationstrategiesforefficientcomputation. 4.OptimizationTechniques: TofurtherimprovetheperformanceofDPMMclusteringonGPUs,weproposeseveraloptimizationtechniques.ThisincludesexploitingGPUparallelism,optimizingmemoryaccesspatterns,andutilizingsharedmemoryforefficientinter-threadcommunication. 5.ExperimentalEvaluation: WepresentextensiveexperimentsonvariousdatasetstoevaluatetheperformanceofourGPUimplementat