预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第3讲变量间的相关关系、统计案例 一、知识梳理 1.变量间的相关关系 常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系. 2.两个变量的线性相关 (1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线. (2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. (3)回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中eq\o(b,\s\up6(^))=eq\f(\o(∑,\s\up6(n),\s\do4(i=1))xiyi-neq\x\to(x)eq\x\to(y),\o(∑,\s\up6(n),\s\do4(i=1))xeq\o\al(2,i)-neq\x\to(x)2),eq\o(a,\s\up6(^))=y-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-)). (4)相关系数 当r>0时,表明两个变量正相关; 当r<0时,表明两个变量负相关. r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r|大于0.75时,认为两个变量有很强的线性相关性. 3.独立性检验 (1)2×2列联表:假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称2×2列联表)为: y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d(2)K2统计量 K2=eq\f(n(ad-bc)2,(a+b)(c+d)(a+c)(b+d))(其中n=a+b+c+d为样本容量). 常用结论 1.求解回归方程的关键是确定回归系数eq\o(a,\s\up6(^)),eq\o(b,\s\up6(^)),应充分利用回归直线过样本中心点(eq\o(x,\s\up6(-)),eq\o(y,\s\up6(-))). 2.根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,则两分类变量有关的把握越大. 3.根据回归方程计算的eq\o(y,\s\up6(^))值,仅是一个预报值,不是真实发生的值. 二、习题改编 1.(必修3P90例题改编)已知x与y之间的一组数据如表: x0123ym35.57已求得y关于x的线性回归方程为eq\o(y,\s\up6(^))=2.1x+0.85,则m的值为. 答案:0.5 2.(选修1­2P16习题1.2T2改编)为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表: 理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025. 根据表中数据,得到K2的观测值 k=eq\f(50×(13×20-10×7)2,23×27×20×30)≈4.844.则认为选修文科与性别有关系出错的可能性为. 解析:K2的观测值k≈4.844>3.841,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%. 答案:5% 一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.() (2)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.() (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.() (4)事件X,Y的关系越密切,由观测数据计算得到的K2的观测值越大.() (5)通过回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))可以估计和观测变量的取值和变化趋势.() 答案:(1)×(2)√(3)√(4)√(5)√ 二、易错纠偏 eq\a\vs4\al(常见误区)(1)混淆相关关系与函数关系; (2)对独立性检验K2值的意义不清楚; (3)不知道回归直线必过样本点中心. 1.两个变量的相关关系有①正相关,②负相关,③不相关,则下列散点图从左到右分别反映的变量间的相关关系是() A.①②③ B.②③① C.②①③ D.①③② 解析:选D.第一个散点图中,散点图中的点是从左下角区域分布到右上角区域,则是正相关;第三个散点图中,散点图中的点是从左上角区域分布到右下角区域,则是负相关