预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课题:9.10研究性课题:多面体欧拉定理的发现(一) 教学目的: 1.了解多面体与简单多面体的概念、发现欧拉公式 2.培养学生发现问题、探究问题、归纳总结能力 教学重点:欧拉公式的发现过程 教学难点:欧拉定义及其证明 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节为研究性课题通过研究欧拉定理的发现过程,让学生了解欧拉公式及其简单应用,扩大学生的知识面,培养学生学习数学的兴趣 教学过程: 一、复习引入: 1欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝(详细资料附后) 2多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线. 3.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体. 4.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等 二、讲解新课: 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体 说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体 2.五种正多面体的顶点数、面数及棱数: 正多面体顶点数面数棱数正四面体446正六面体8612正八面体6812正十二面体201230正二十面体122030 发现:它们的顶点数、面数及棱数有共同的关系式:. 上述关系式对简单多面体都成立 3.欧拉公式的探究 1.请查出图⑹的顶点数V、面数F、和棱数E,并计算V+F-E=6+6-10=2 2.查出图⑺中的顶点数V、面数F、和棱数E,并验证上面公式是否还成立? 3.假如图⑸→图⑻的多面体表面是像皮膜,向内充气则⑸⑹将变成一个球面,图⑺将变成两个紧贴的球面,图⑻将变成一个环面。 可以验证:只有像⑸⑹这样,经过连续变形,表面能变为一个球面的多面体才满足公式V+F-E=2。这个公式称为欧拉公式,这样的多面体称为简单多面体。 4.欧拉定理(欧拉公式):简单多面体的顶点数、面数及棱数有关系式: . 证明:(方法一) ⑴如图⑽:将多面体的底面ABCDE剪掉,抻成平面图形,其顶点、棱数,面数(剪掉面用右图中ABCDE表示)均没有变,故所有面的内角总和不变。 ⑵设左图中共有F个面,分别是边形,顶点数为V,棱数为E,则. 左图中,所有面的内角总和为 = = ⑶右图中,所有面的内角总和为 = ⑷= 整理得. (方法二)以四面体为例来说明: 将它的一个面去掉,并使其变为平面图形,四面体的顶点数、棱数与剩下的面数变形后都没有变因此,要研究、和的关系,只要去掉一个面,将它变形为平面图形即可 对平面图形,我们来研究: (1)去掉一条棱,就减少一个面例如去掉,就减少一个面. 同理,去掉棱、,也就各减少一个面、. 所以、的值都不变,因此的值也不变 (2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点例如去掉,就减少一个顶点.同理,去掉就减少一个顶点,最后剩下 (如图). 在此过程中的值不变,但这时面数是, 所以的值也不变 由于最后只剩下,所以, 最后加上去掉的一个面,就得到. 4.欧拉示性数: 在欧拉公式中令,叫欧拉示性数 说明:(1)简单多面体的欧拉示性数. (2)带一个洞的多面体的欧拉示性数.例如:长方体挖去一个洞连结底面相应顶点得到的多面体. 三、讲解范例: 例1一个面体共有8条棱,5个顶点,求 解:∵,∴,∴.例2.一个正面体共有8个顶点,每个顶点处共有三条棱,求 解:∵,, ∴, ∴. 四、小结:欧拉定理及其证明;欧拉示性数 五、课后作业: 六、板书设计(略) 七、欧拉(EulerLonhard,1707~1783)欧拉,瑞士数学家及自然科学家在1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝欧拉出生于牧师家庭,自幼已受到父亲的教育13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位欧拉的父亲希望他学习神学,但他最感兴趣的是数学在上大学时,他已受到约翰第一.伯努利的特别指导,专心研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,于19岁时(1726年)开始创作文章,并获得巴黎科学院奖金1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作并在1731年接替丹尼尔第一.伯努利,成为物理学教授 在