预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-7- 第3讲平面向量的数量积 【2013年高考会这样考】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 基础梳理 1.两个向量的夹角 已知两个非零向量a和b(如图),作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角,当θ=0°时,a与b同向;当θ=180°时,a与b反向;如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b. 2.两个向量的数量积的定义 已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0. 3.向量数量积的几何意义 数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的数量积. 4.向量数量积的性质 设a、b都是非零向量,e是单位向量,θ为a与b(或e)的夹角.则 (1)e·a=a·e=|a|cosθ; (2)a⊥b⇔a·b=0; (3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a||b|,特别的,a·a=|a|2或者|a|=eq\r(a·a); (4)cosθ=eq\f(a·b,|a||b|); (5)|a·b|≤|a||b|. 5.向量数量积的运算律 (1)a·b=b·a; (2)λa·b=λ(a·b)=a·(λb); (3)(a+b)·c=a·c+b·c. 6.平面向量数量积的坐标运算 设向量a=(x1,y1),b=(x2,y2),向量a与b的夹角为θ,则 (1)a·b=x1x2+y1y2; (2)|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)); (3)cos〈a,b〉=eq\f(x1x2+y1y2,\r(x\o\al(2,1)+y\o\al(2,1))\r(x\o\al(2,2)+y\o\al(2,2))); (4)a⊥b⇔a·b=0⇔x1x2+y1y2=0. 7.若A(x1,y1),B(x2,y2),eq\o(AB,\s\up6(→))=a,则|a|=eq\r(x1-x22+y1-y22)(平面内两点间的距离公式). 一个条件 两个向量垂直的充要条件:a⊥b⇔x1x2+y1y2=0. 两个探究 (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? 三个防范 (1)若a,b,c是实数,则ab=ac⇒b=c(a≠0);但对于向量就没有这样的性质,即若向量a,b,c若满足a·b=a·c(a≠0),则不一定有b=c,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (2)数量积运算不适合结合律,即(a·b)c≠a(b·c),这是由于(a·b)c表示一个与c共线的向量,a(b·c)表示一个与a共线的向量,而a与c不一定共线,因此(a·b)c与a(b·c)不一定相等. (3)向量夹角的概念要领会,比如正三角形ABC中,eq\o(AB,\s\up6(→))与eq\o(BC,\s\up6(→))的夹角应为120°,而不是60°. 双基自测 1.(人教A版教材习题改编)已知|a|=3,|b|=2,若a·b=-3,则a与b的夹角为(). A.eq\f(π,3)B.eq\f(π,4)C.eq\f(2π,3)D.eq\f(3π,4) 解析设a与b的夹角为θ,则cosθ=eq\f(a·b,|a||b|)=eq\f(-3,3×2)=-eq\f(1,2).又0≤θ≤π,∴θ=eq\f(2π,3). 答案C 2.若a,b,c为任意向量,m∈R,则下列等式不一定成立的是(). A.(a+b)+c=a+(b+c) B.(a+b)·c=a·c+b·c C.m(a+b)=ma+mb D.(a·b)·c=a·(b·c) 答案D 3.(2011·广东)若向量a,b,c满足a∥b,且a⊥c,则c·(a+2b)=(). A.4B.3C.2D.0 解析由a∥b及a⊥c,得b⊥c,则c·(a+2b)=c·a+2c·b=0. 答案D 4.已知向量a=(1,2),向量b=(x,-2),且a⊥(a-b),则实数x等于(). A.9B.4C.0D.-4 解析a-b=(1-x,4). 由a⊥(a-b),得1-x+8=0. ∴x