预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

阈值协整模型研究的新进展——评《平滑转移协整模型的理论分析与应用》 阈值协整模型是最近几十年来在实证研究中愈发流行的一种时间序列模型。相较于传统的协整模型,阈值协整模型更接近于实际经济中的现象,并且可以更好地体现非线性动态变化的特点。《平滑转移协整模型的理论分析与应用》这篇文章最先发表于《经济学(季刊)》2016年第3期,是一篇关于阈值协整模型的新进展的评述性文章,介绍了平滑转移协整模型的理论基础、估计方法及应用领域,并对未来的研究方向进行了展望。 首先,论文介绍了阈值协整模型的理论基础。阈值模型的基本思想是将模型分为不同的阶段,在每一阶段内线性关系成立,但各阶段之间的关系是非线性的。而阈值协整模型则是在此基础上结合了协整关系的思想,使得模型更加贴近经济现象。平滑转移协整模型是其中的一类,它不仅考虑了阈值效应,并且分阶段考虑了趋向均值协整关系的时间动态性质。论文阐述了其理论基础,给读者以深入理解。 接着,论文介绍了阈值协整模型的估计方法。由于阈值模型的非线性特征,其模型参数往往难以简便地得到精确的估计。针对这个问题,学术界提出了多种方法,如非参数方法、线性的OLS估计、极大似然估计等。平滑转移协整模型是一种使用变系数平滑滤波的的半参数方法,该方法弥补了传统非参数方法的不足和传统线性OLS估计方法的局限性,在实践中表现出较高的估计精度和稳健性。文章对这种估计方法做了重点介绍。 最后,文章论述了阈值协整模型在实际应用领域的应用情况。阈值协整模型的重要性在于其能够更好地研究非线性动态变化的现象。阈值协整模型既适用于微观经济学的研究,也适用于宏观经济学的研究。例如,在股票市场和汇率市场预测方向上,它可以更加准确地把握市场的波动情况,从而提高预测精度。此外,在宏观经济学中,阈值协整模型的应用也非常广泛,如对于物价、消费、GDP等经济变量的研究。 总之,《平滑转移协整模型的理论分析与应用》这篇文章对阈值协整模型做了较为全面地评述,介绍了其理论基础、估计方法以及应用情况和领域。该文章的发表不仅有益于学术界内部的深入研究,同时也有助于更好地开展相关研究和推动阈值协整模型的发展。