预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题05平面向量 易错点1忽略了零向量的特殊性 给出下列命题: ①向量的长度与向量的长度相等. ②向量a与b平行,则a与b的方向相同或相反. ③两个有共同起点而且相等的向量,其终点必相同. ④零向量与任意数的乘积都为零. 其中不正确命题的序号是. 【错解】④ 【错因分析】解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 【试题解析】①与是相反向量、模相等,正确;②由零向量的方向是任意的且与任意向量平行,不正确;③相等向量大小相等、方向相同,又起点相同,则终点相同,正确;④零向量与任意数的乘积都为零向量,不正确,故不正确命题的序号是②④. 【参考答案】②④ 解决向量的概念问题应关注六点: (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关. 相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (5)非零向量a与的关系:是a方向上的单位向量. (6)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小. 1.下列说法正确的是 A.若与都是单位向量,则= B.若=,则||=||且与的方向相同 C.若+=0,则||=|| D.若=0,则与是相反向量 【答案】C 【解析】因为向量相等必须满足模相等且方向相同,所以A不正确;因为0的方向是任意的,当时,B不正确;因为,所以,所以,故C正确;因为,所以,与不是相反向量,故D不正确.所以选C. 【名师点睛】本小题主要考查两个向量相等的充要条件,即大小和方向均相同.还考查了零向量的概念,零向量长度为零,方向任意.属于基础题. 易错点2忽视平行四边形的多样性失误 已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标. 【错解】设A(-1,0),B(3,0),C(1,-5),D(x,y),∵四边形ABCD为平行四边形,∴=,又∵=(4,0),=(1-x,-5-y),∴,解得x=-3,y=-5,∴第四个顶点的坐标为(-3,-5). 【错因分析】此题的错解原因为思维定势,错误的认为平行四边形只有一种情形,在解题思路中出现了漏解.实际上,题目的条件中只给出了平行四边形的三个顶点,并没有给出相应的顺序,故可能有三种不同的情形. 【试题解析】如图所示,设A(-1,0),B(3,0),C(1,-5),D(x,y). 若四边形ABCD1为平行四边形,则=,而=(x+1,y),=(-2,-5). 由=,得,∴,∴D1(-3,-5). 若四边形ACD2B为平行四边形,则=.而=(4,0),=(x-1,y+5). ∴,∴,∴D2(5,-5). ③若四边形ACBD3为平行四边形,则=.而=(x+1,y),=(2,5),∴,∴,∴D3(1,5). 综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5). 1.要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标. 2.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的. 3.若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成eq\f(x1,x2)=eq\f(y1,y2),因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0. 2.已知为四边形所在的平面内的一点,且向量,,,满足等式,若点为的中点,则 A. B. C. D. 【答案】B 【解析】∵向量,,,满足等式, ∴,即, 则四边形为平行四边形,∵为的中点,∴为对角线与的交点, 则,则, 故选:B. 错点3忽视两向量夹角的范围 已知向量 (1)若为锐角,求的取值范围; (2)当时,求的值. 【错解】(1)若为锐角,则且不同向. ,∴. (2)由题意,可得, 又, , 即, 解得或. 【错因分析】(1)利用向量夹角公式即可得出,注意去掉同方向情况; (2)利用向量垂直与数量积的关系即可得出.. 【试题解析】(1)若为锐角,则且不同向. ,∴. 当时,同向,. 即若为锐角,的取值范围是{x|且}. (2)由题意,可得, 又, , 即, 解得或. 【参考答案】(1){x|且};(2)或. 1.两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.