基于负载金纳米颗粒的TiO_2纳米线的SERS基底.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于负载金纳米颗粒的TiO_2纳米线的SERS基底.docx
基于负载金纳米颗粒的TiO_2纳米线的SERS基底近年来,表面增强拉曼散射(SERS)作为一种灵敏、非破坏性、快速和可重复性的分析技术,已被广泛应用于化学、生物、环境和材料科学等领域。在SERS技术中,基底是至关重要的组成部分之一,因为它们不仅能增强信号强度,还能提高信号稳定性和可重复性。金和银是常用的SERS基底材料,但它们在实际应用中有着很多限制。例如,在生物样品中,金和银基底会与生物分子发生相互作用,从而导致SERS信号的干扰和衰减。此外,它们还具有不稳定性和成本较高等缺点。因此,寻找新的SERS基
一种表面负载银纳米颗粒的SERS基底的制备方法.pdf
本发明公开了一种表面负载银纳米颗粒的SERS基底的制备方法,包括步骤1:镀银膜石英基底的制备;将干净的石英衬底在丙酮、乙醇、超纯水中分别清洗2?4次,在石英衬底上沉积Ag膜,并采用厚度检测器对Ag膜厚度进行检测,最终控制Ag膜厚度为10?800nm;步骤2:将步骤1制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350?450℃,升温速率控制在1?10℃/min,加热时间控制在2?60min;步骤3:将步骤2得到的镀银膜石英衬底置于空气中自然冷却,即得到负载银纳米颗粒的SERS基底。本发明制备的基底灵敏
一种表面负载银纳米颗粒的SERS基底的制备方法.pdf
本发明公开了一种表面负载银纳米颗粒的SERS基底的制备方法,包括步骤1:镀银膜石英基底的制备;将干净的石英衬底在丙酮、乙醇、超纯水中分别清洗2?4次,在石英衬底上沉积Ag膜,并采用厚度检测器对Ag膜厚度进行检测,最终控制Ag膜厚度为10?800nm;步骤2:将步骤1制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350?450℃,升温速率控制在1?10℃/min,加热时间控制在2?60min;步骤3:将步骤2得到的镀银膜石英衬底置于空气中自然冷却,即得到负载银纳米颗粒的SERS基底。本发明制备的基底灵敏
纳米银修饰硅纳米线阵活性基底的SERS研究.docx
纳米银修饰硅纳米线阵活性基底的SERS研究摘要:本文研究了通过纳米银修饰硅纳米线阵列作为表面增强拉曼散射技术(SERS)的活性基底。通过利用自组装单分子层方法将纳米银引入硅纳米线阵列表面,形成了高度有序的纳米银修饰结构。运用紫外可见光谱、扫描电镜和表面增强拉曼散射光谱等技术对纳米银修饰硅纳米线阵列的形貌和特性进行了分析。结果表明,通过将纳米银引入硅纳米线阵列表面,可以大大增强SERS信号,并在分子检测、表面分析和光学传感等领域具有广泛的应用前景。关键词:纳米银,硅纳米线阵列,表面增强拉曼散射,活性基底引言
银纳米与金纳米颗粒耦合的单根SERS基底的构筑及其性能研究.docx
银纳米与金纳米颗粒耦合的单根SERS基底的构筑及其性能研究随着纳米技术的不断发展,表面增强拉曼散射(SurfaceEnhancedRamanScattering,SERS)技术作为一种高灵敏度、高分辨率的分析手段,已经广泛用于化学、生物、材料等领域。在SERS技术中,SERS基底的选取对SERS信号的强度和稳定性有着重要的影响。本文旨在探讨一种银纳米与金纳米颗粒耦合的单根SERS基底的构筑及其性能研究。一、耦合金银纳米颗粒金纳米结构的表面等离激元共振(LocalizedSurfacePlasmonReso