预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于对角递归神经网络的在线自整定解耦控制算法(英文) Title:OnlineSelf-TuningDecouplingControlAlgorithmbasedonDiagonalRecursiveNeuralNetworks Abstract: Withtherapiddevelopmentofintelligentcontrolalgorithms,avarietyofapproacheshavebeenproposedforvariouscontroltasks.ThispaperpresentsanOnlineSelf-TuningDecouplingControlAlgorithmbasedonDiagonalRecursiveNeuralNetworks(DRNN)toaddresstheinherentcouplingproblemincomplexcontrolsystems.TheproposedalgorithmutilizesDRNNtolearnthesystemdynamicsandautomaticallyadjustthecontrolparametersinreal-time.Theeffectivenessandefficiencyofthealgorithmaredemonstratedthroughsimulationsandexperiments. 1.Introduction Controlsystemsoftenencountercomplicationsduetothepresenceofmultipleinput-outputcouplings,nonlinearities,anduncertainties.Traditionalcontrolmethodsfailtohandletheseissuesadequately,promptingtheneedforadvancedtechniques.Inrecentyears,neuralnetworkshaveshownremarkablepotentialincontrolapplications.ThispaperfocusesontheuseofDiagonalRecursiveNeuralNetworks(DRNN)foronlineself-tuningdecouplingcontrol. 2.DiagonalRecursiveNeuralNetworks 2.1Architecture TheDRNNarchitectureconsistsofmultiplelayersofneurons,witheachlayerreceivingboththeinputsandoutputsfromthepreviouslayer.Thediagonalstructureallowsthenetworktocapturetherelationshipbetweeninputsandoutputs,makingitsuitablefordecouplingcontrol. 2.2LearningAlgorithm ThelearningalgorithmofDRNNinvolvesforwardpropagationandbackwardpropagation.Duringforwardpropagation,thenetworkestimatestheoutputsbasedontheinputsandtheweightsofeachneuron.Theerrorbetweentheestimatedoutputsandtheactualoutputsisthencalculated.Backwardpropagationadjuststheweightsofeachneuroninthenetworkbasedontheerror,usingtechniquessuchasgradientdescent. 3.OnlineSelf-TuningDecouplingControlAlgorithm 3.1ControlStructure ThecontrolstructureconsistsofaDRNN,acontroller,andafeedbackloop.TheDRNNlearnsthedynamicmodelofthecoupledsystem,whilethecontrollerutilizestheknowledgelearnedbytheDRNNtocomputethecontrolsignals.Thefeedbackloopprovidesthenecessaryinformationfortheself-