

基于变分模态分解和FABP的短期电力负荷预测.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于变分模态分解和FABP的短期电力负荷预测.docx
基于变分模态分解和FABP的短期电力负荷预测基于变分模态分解和FABP的短期电力负荷预测摘要:随着电力系统规模的不断扩大和电力负荷的快速增长,准确预测电力负荷对于电力系统的安全运行和经济调度至关重要。然而,电力负荷预测受到复杂多变的因素的影响,如季节性变化、天气变化、节假日等。为了解决这一挑战,本文提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和模糊自适应粒子群优化算法(FuzzyAdaptiveBackPropagation,FABP)的短期电力负荷预测方
基于变分模态分解和复合变量选取的短期负荷预测.pptx
添加副标题目录PART01介绍变分模态分解分解原理和步骤在负荷预测中的应用PART02介绍复合变量选取选取方法和标准在负荷预测中的重要性PART03预测模型构建模型参数和变量模型验证和评估PART04实验数据和环境实验结果展示结果分析和讨论PART05研究结论研究局限和不足未来研究方向和展望感谢您的观看
一种基于变分模态分解和人工蜂群优化的短期电力负荷预测方法.pdf
本发明公开一种基于模态分解和群优化算法的短期电力负荷预测方法,涉及电力负荷预测领域和人工智能领域,包含以下步骤:(1)负荷数据的获取(2)负荷数据的分解。(3)负荷数据的划分。(4)模型输入矩阵的构建。(5)预测模型的构建。本发明采用VMD对负荷序列进行分解,通过ABC算法对SVR的c和g参数进行寻优,构建ABC‑SVR模型对分解后的若干分量进行预测,具有较好的预测性能并且对于数据量的要求较小,具有较好的实践应用价值。
基于模态分解方法的短期电力负荷预测研究.docx
基于模态分解方法的短期电力负荷预测研究基于模态分解方法的短期电力负荷预测研究摘要:电力负荷预测在电力系统运行和调度中起着至关重要的作用。准确地预测短期电力负荷能够帮助电力系统管理者优化电力资源配置,提高供电能力和经济效益。本文针对短期电力负荷预测问题,提出了一种基于模态分解方法的预测模型。该模型首先利用模态分解方法将原始负荷时间序列分解为多个子序列,然后利用这些子序列进行预测,最后再将预测结果合并得到最终的负荷预测结果。实验结果表明,基于模态分解方法的短期电力负荷预测模型具有较高的预测精度和良好的实时性,
基于变分模态分解和LSSVM的风电场短期风速预测.docx
基于变分模态分解和LSSVM的风电场短期风速预测标题:基于变分模态分解和LSSVM的风电场短期风速预测引言:风能作为一种可再生能源在世界范围内受到了广泛关注。风电场的效率和稳定性对于风能的利用至关重要。因此,准确预测风电场的短期风速对于风电发电量的调度和电网的稳定性具有重要意义。本论文提出了一种基于变分模态分解(VMD)和LeastSquareSupportVectorMachine(LSSVM)的风电场短期风速预测方法。通过对风速信号进行变分模态分解,将非平稳信号分解为多个固有模态函数(IMF)。然后,