预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共60页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Tel: 86613747 E-mail:lss@zjtcm.net 授课:68 学分:4在数学发展中,理论和计算是紧密联系的。现代计算机的出现为大规模的数值计算创造了条件,集中而系统的研究适用于计算机的数值方法变得十分迫切和必要。数值计算方法正是在大量的数值计算实践和理论分析工作的基础上发展起来的,它不仅仅是一些数值方法的简单积累,而且揭示了包含在多种多样的数值方法之间的相同的结构和统一的原理。数值算法是进行科学计算必不可缺少的起码常识;更为重要的是通过对它们的讨论,能够使人们掌握设计数值算法的基本方法和一般原理,为在计算机上解决科学计算问题打下基础。因此,计算方法已经成为工科大学生必修课程。1.认识建立算法和对每个算法进行理论分析是基本 任务,主动适应“公式多”的特点;2.注重各章建立算法的问题的提法,搞清问题的基 本提法,逐步深入;3.理解每个算法建立的数学背景,数学原理和基本 线索,对最基本的算法要非常熟悉;4.认真进行数值计算的训练,学习各章算法完全是 为用于实际计算,必须真会算。科学素质:拓宽对21世纪科学的了解;加深对数学思想的理解;培养用数学思考世界的习惯数学能力:数学知识的运用能力;对专业中问题建立数学求解方法与实际计算能力应用问题中数学创造性能力计算知识:常用算法的数学理论;在“误差、存贮、速度”之下的实际计算方法;对结果的数值分析方法•记好课堂笔记数值分析讲述的基本内容 如何把数学模型归结为数值问题 如何制定快速的算法 如何估计一个给定算法的精度 分析误差在计算过程中的积累和传播 如何构造精度更高的算法 如何使算法较少的占用存储量 如何分析算法的优缺点本课程的基本要求 掌握数值方法的基本原理 掌握常用的科学与工程计算的基本方法 能用所学方法在计算机上算出正确结果 本章内容 §1引言 §2误差的来源及分类 §3误差的度量 §4误差的传播 §5减少运算误差的原则要求掌握的内容1.1引言 数值分析又称计算方法,它是研究各种数 学问题的数值解法及其理论的一门学科。1.对于要解决的问题建立数学模型 2.研究用于求解该数学问题近似解的算法和过程 3.按照2进行计算,得到计算结果数值计算以及计算机模拟(包括当前流行的虚拟现实的方法),已经是在工程技术研究和经济、社会科学中广泛应用的方法,带来巨大的经济效益 天气预报与亿次计算机 波音777的无纸设计与有限元 CT、核磁共振 计算流体力学与爆炸工程 能源问题与大型计算计算方法课程主要讨论如何构造求数学模型近似解的算法,讨论算法的数学原理、误差和复杂性,配合程序设计进行计算试验并分析试验结果。 与纯数学的理论方法不同,用数值计算方法所求出的结果一般不是解的精确值或者准确的解析表达式,而是所求真解的某些近似值或近似曲线。算法(数值算法):是指有步骤地完成解数值问 题的过程。 数值算法的特点 •目的性,条件和结论、输入和输出数据均要有明 确的规定与要求。 •确定性,精确地给出每一步的操作(不一定都是运 算)定义,不容许有歧义。 •可执行性,算法中的每个操作都是可执行的 •有穷性,在有限步内能够结束解题过程 计算机上的算法,按面向求解问题的不同, 分为数值算法和非数值算法。在用数值方法解题过程中可能产生的误差归纳起来有如下几类: 1.模型误差 2.观测误差 3.截断误差 4.舍入误差用数学方法解决一个具体的实际问题,首先要建立数学模型,这就要对实际问题进行抽象、简化,因而数学模型本身总含有误差,这种误差叫做模型误差 数学模型是指那些利用数学语言模拟现实而建立起来的有关量的描述 数学模型的准确解与实际问题的真解不同在数学模型中通常包含各种各样的参变量,如温度、长度、电压等,这些参数往往是通过观测得到的,因此也带来了误差,这种误差叫观测误差 数学模型中的参数和原始数据,是由观测和试验得到的 由于测量工具的精度、观测方法或客观条件的限制,使数据含有测量误差,这类误差叫做观测误差或数据误差 根据实际情况可以得到误差上下界 数值方法中需要了解观测误差,以便选择合理的数值方法与之适应精确公式用近似公式代替时,所产生的误差叫截断误差例如,函数f(x)用泰勒(Taylor)多项式 在数值计算中只能对有限位字长的数值进行运算 需要对参数、中间结果、最终结果作有限位字长的处理工作,这种处理工作称作舍入处理 用有限位数字代替精确数,这种误差叫做舍入误差,是数值计算中必须考虑的一类误差第一章计算方法与误差1.3误差的度量1.3误差的度量1.3误差的度量1.3.2相对误差和相对误差限1.3.2相对误差和相对误差限1.3.2相对误差和相对误差限1.3.3有效数字1.3.3有效数字例6.当取3.141作为的近似值时 -3.141=0.3141592…101-0.3141101 ≤0.000