预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一类含时滞的扩散单神经元模型的分岔分析(英文) Title:BifurcationAnalysisofaClassofTime-DelayedDiffusionSingleNeuronModels Abstract: Thestudyofneuraldynamicswithtimedelayshasgainedsignificantattentionduetoitsrelevanceinunderstandingcomplexneuronalbehaviors.Thispaperfocusesonanalyzingthebifurcationphenomenainaclassoftime-delayeddiffusionsingleneuronmodels.Byconsideringtheimpactofthetimedelayonthestabilityanddynamicsofthesystem,weaimtoshedlightontheroleoftimedelaysinneuraldynamicsandprovideinsightsintopotentialbifurcationscenarios. Introduction: Neuronsareknownfortheirabilitytotransmitandprocessinformationthroughcomplexelectricalandchemicalsignaling.Modelingneuronalbehavioriscrucialforunderstandingvariousneurologicalphenomenaanddesigningeffectivetherapeuticstrategies.Theinclusionoftimedelaysinneuralmodelsisimportantbecausedelaysinsignalpropagationcansignificantlyimpactthedynamicsandstabilityofneurons. Thediffusionequationprovidesamathematicalframeworkformodelingthespreadofsubstancesorinformationinspace.Combiningdiffusionwithsingleneuronmodelsallowsustostudyhowinformationspreadsthroughneuralnetworks.However,theintroductionoftimedelaysaddsanadditionallayerofcomplexitytothesemodels. Methods: Toanalyzethebifurcationphenomenaintime-delayeddiffusionsingleneuronmodels,weutilizetechniquesfromdynamicalsystemstheory.Specifically,weconsiderbothlocalandglobalstabilityanalysis,aswellasnumericalsimulationstoillustratevariousbifurcationscenarios. Results: Ouranalysisrevealsthattheinclusionoftimedelaysindiffusionsingleneuronmodelscanleadtorichbifurcationbehavior.Bysystematicallyvaryingthevaluesofneuronalparameters,suchasthediffusioncoefficient,timedelay,andfiringthreshold,weobservevariousbifurcationscenarios,includingHopfbifurcations,saddle-nodebifurcations,andperiod-doublingbifurcations.Thesebifurcationphenomenaindicatetheemergenceofcomplexoscillatorydynamicsandmultiplestablestatesintheneuronmodel. Discussion: Thefindingsofthisstudyhighlighttheimportanceofconsideringtimedelaysinthemodelingofneuronaldynamic