预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

方案优化型综合问题 题型预测 寻找问题的最优解,是这一类题目的共同特点.解决问题的方法涉及均值不等式、单调性等求最值的方法,有些时候也用穷举法.由于与实际问题联系较紧密,此类问题在高考中往往以应用题的面目出现. 范例选讲 例1.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车? (Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 讲解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为: . 整理得:. 所以,当时,最大,最大值为307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益是307050元. 点评:实际问题的最值要注意自变量的取值范围. 例2.某工厂生产容积为立方米的圆柱形无盖容器,制造底面的材料每平方米30元,制造侧面的材料每平方米20元,设计时材料的厚度及损耗可以忽略不计. (Ⅰ)把制造容器的成本y(元)表示成容器底面半径x(米)的函数,并指出当底面半径为多少时,制造容器的成本最低?求出最低成本; (Ⅱ)若为某种特殊需要,要求容器的底面半径不小于2(米),此时最低成本为多少元?(精确到1元) 讲解:(Ⅰ)设圆柱形容器的高为h,则. 所以,. 因为,所以, , 等号当且仅当,即时取得. (Ⅱ)当时,由(Ⅰ)可知,不能利用均值不等式来求解的最小值,所以,我们可以考虑函数的单调性. 任取,且设,则 , 由于,所以,,所以,, 所以,函数在区间上单调递增. 所以,当时,取得最小值为:(元). 点评:运用均值不等式要注意等号成立的条件. 例3.小红现在是初一的学生,父母准备为他在银行存20000元,作为5年后上大学的费用,如果银行整存整取的年利率如下: 项目1年期2年期3年期5年期年利率1.98%2.25%2.52%2.79% 利息税为20%,则小红父母应该选择怎样的存款方式,可使5年后所获收益最大.请说明理由. 讲解:小红父母存款的方式可以有多种选择,但为了确保最大利润,应该遵循如下原则:(1)5年结束时,所存款项应该恰好到期(否则以活期记,损失较大);(2)如果存两次(或两次以上),则第2次存款时,应该将第1次存款所得本息和全部存入银行. 为叙述方便,用表示把元本金,先存一次n年期,再存一次m年期所得本息和.如:表示先存2个1年期,再存一个2年期所得本息和. 首先,可以考虑下面的问题:是否成立?即把元本金,先存一次n年期,再存一次m年期与先存一次m年期,再存一次n年期,所得本息和是否相同? 因为, 所以, 根据以上分析,我们只需考虑下面的几种情况:,,,,.方法之一是直接计算,但运算量相对较大.为此,我们可以考虑下面的办法: (1)比较与的大小关系: 因为, , 所以,<.所以,只需考虑上述八种情况中的:,,. (2)比较和的大小. , , 所以,<.所以,只需比较,,. 因为:, , . 所以,最大,即小红父母应该选择先存一次1年期,再存一次5年期(或先存一次5年期,再存一次1年期)获利最多.这与我们通常的认识是一致的. 点评:本题的目的是通过分析、计算寻找问题的最优解.然而,如果通过穷举得出结论,计算可能就较为复杂了,因此,需要优化的不只是结果,还有运算的过程.