预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.1.2用二分法求方程的近似解 从容说课 求方程的解是常见的数学问题,这之前我们都是在等式状态下研究方程的变化关系,从而得到诸如求根公式等方程解,但有些方程求精确解较难.本课试图从另一个角度来求方程的近似解.说求方程的近似解倒不如说是逼近解.本课重点是学习一种思维方式. 通过研究一元二次方程的根及相应的函数图象与轴交点的横坐标的关系,导出函数的零点的概念;以具体函数在某闭区间上存在零点的特点,探究在某区间上图象连续的函数存在零点的判定方法;以求具体方程的近似解介绍“二分法”并总结其实施步骤等,都体现了从具体到一般的认知过程.教学时,要注意让学生通过具体实例的探究,归纳概括所发现的结论或规律,并用准确的数学语言表述出来. 三维目标 一、知识与技能 根据具体函数的图象,能借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法. 二、过程与方法 1.自主学习,了解逼近思想、极限思想. 2.探究与活动,适当借助现代化的计算工具解决问题,变人解为机器解. 三、情感态度与价值观 通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程. 教学重点 通过用“二分法”求方程的近似解,使学生体会函数的零点与方程根之间的关系,初步形成用函数观点处理问题的意识. 教学难点 在利用“二分法”求方程的近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难.要解决这一困难,需要恰当地使用信息技术工具. 教具准备 多媒体课件、电脑Excel软件. 教学过程 一、创设情景,引入新课 师:大家先来看一段录像(放映CCTV2幸运52片断) 主持人李咏说道:猜一猜这件商品的价格.观众甲:2000!李咏:高了!观众甲:1000!李咏:低了!观众甲:1700!李咏:高了!观众甲:1400!李咏:低了!观众甲:1500!李咏:低了!观众甲:1550!李咏:低了!观众甲:1580!李咏:高了!观众甲:1570!李咏:低了!观众甲:1578!李咏:低了!观众甲:1579!李咏:这件商品归你了.下一件…… 师:如果让你来猜一件商品的价格,你如何猜? 生甲:先初步估算一个价格,如果高了再每隔一元降低报价. 生乙:这样太慢了,先初步估算一个价格,如果高了再每隔100元降低报价.如果低了,每50元上涨,如果再高了,每隔20元降低报价,如果低了,每隔10元上升报价…… 生丙:先初步估算一个价格,如果高了再报一个价格,如果低了就报两个价格和的一半,如果高了再把报的低价与一半价再求其半报出价格,如果低了就把刚刚报出的价格与前面高的价格结合起来取其和的半价…… 二、讲解新课 师:第三个同学的回答可以帮助我们解一些数学问题,现在的问题是: 能否求解方程lnx+2x-6=0?如果能求解的话,怎么去解?你能用函数零点的性质吗? 学生共同探索(倡导学生积极主动,勇于探索的学习方式,有助于发挥学生学习的主动性.先分组讨论,后各组发表意见,归纳如下) 为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围. 取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084.因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内. 再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512.因为f(2.5)·f(2.75)<0,所以零点在区间(2.5,2.75)内. 由于(2,3)(2.5,3)(2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围越来越小(见下表和图).这样,在一定精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53125|=0.0078125<0.01,所以,我们可以将x=2.54作为函数f(x)=lnx+2x-6零点的近似值,也即方程lnx+2x-6=0根的近似值. 区间中点的值中点函数近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53125-0.009(2.53125,2.5625)2.5468750.029(2.53125,2.546875)2.53906250.010(2.53125,2.5390625)2.535156250.001 由此得到: 1.二分法: 对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 2.用