预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于数据挖掘技术的高校学生成绩管理研究 Title:AStudyontheApplicationofDataMiningTechniquesinCollegeStudentPerformanceManagement Abstract: Inrecentyears,educationalinstitutionshavebeenincreasinglyutilizingdataminingtechniquestoimprovetheirmanagementanddecision-makingprocesses.Thispaperfocusesontheapplicationofdataminingtechniquesincollegestudentperformancemanagement.Byanalyzingandmodelingthevastamountofstudentperformancedata,educationalinstitutionscangainvaluableinsightsintofactorsaffectingstudentsuccessandimplementtargetedinterventionsforimprovingstudentoutcomes.Thisstudyexploresvariousdataminingtechniquesandtheirapplicationsinoptimizingstudentperformancemanagement,suchaspredictingstudentgrades,identifyingat-riskstudents,andunderstandingthefactorsinfluencingacademicachievements.Additionally,thepaperdiscussesthechallengesandfuturedirectionsinusingdataminingtechniquesforstudentperformancemanagementinhighereducation. Introduction: Withtheadvancementofinformationtechnology,educationalinstitutionshaveaccesstovastamountsofdatarelatedtostudentperformance.Thisdataincludesstudentdemographics,academicrecords,courseregistrations,examresults,andvariousotherperformanceindicators.However,merelycollectingthisdataisnotsufficient;educationalinstitutionsneedtoextractmeaningfulinsightsfromittosupportdecision-makingprocessesandimprovestudentperformance.Thisiswheredataminingtechniquescomeintoplay.Dataminingreferstotheprocessofanalyzinglargedatasetstodiscoverpatterns,relationships,andhiddenknowledge.Byapplyingdataminingtechniques,educationalinstitutionscanuncovervaluableinformationfromtheirstudentperformancedata,ultimatelyimprovingtheeffectivenessoftheirprogramsandinterventions. Methods: Thisstudyemploysvariousdataminingtechniquesforcollegestudentperformancemanagement.Thetechniquesusedincludeclassification,regression,clustering,andassociationrulemining.Firstly,classificationtechniquesareappliedtopredictstudentgradesbasedonhistoricaldata.Thisenableseducationalinstitutionstoidentifystudentswhomayrequireadditi