预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进的粒子群优化算法用于方向图阵列综合 Title:ImprovedParticleSwarmOptimizationforDirectionalArraySynthesis Abstract: Thedirectionalarraysynthesisprobleminvolvestheoptimalarrangementandconfigurationofantennaelementsinordertoachievedesiredradiationpatterns.Inrecentyears,ParticleSwarmOptimization(PSO)hasemergedasaneffectiveoptimizationalgorithmforsolvingvariousengineeringproblems.However,thetraditionalPSOalgorithmsuffersfromprematureconvergenceandslowconvergencerates.Inthispaper,weproposeanimprovedPSOalgorithmfordirectionalarraysynthesis,whichaddressestheselimitationsandprovidesbettersolutions. 1.Introduction: Directionalarraysynthesisplaysacrucialroleinwirelesscommunicationsystems,radarsystems,andsatellitecommunication.Thegoalistodesignanantennaarraywithspecificradiationpatterns,suchashighgain,narrowbeamwidth,andlowsidelobes.Theoptimizationprocessinvolvesdeterminingthepositionsandexcitationsofantennaelements. 2.ParticleSwarmOptimization: ParticleSwarmOptimization(PSO)isapopulation-basedglobaloptimizationalgorithminspiredbythecollectivebehaviorofbirdflockingandfishschooling.IntraditionalPSO,eachparticlerepresentsapotentialsolutionandmovesinthesearchspacetowardthebestsolutionfoundsofarbyitselfanditsneighbors.However,PSOsuffersfromprematureconvergenceduetoitslackofdiversityandslowconvergencerates,whichlimitsitseffectivenessforcomplexengineeringproblems. 3.ProposedImprovedPSOAlgorithm: TheimprovedPSOalgorithmproposedinthispaperincorporatesthefollowingenhancements: 3.1InertiaWeightAdaptation:Thisadaptationallowsthesearchprocesstoexploremorediverseregionsofthesearchspaceintheearlystages,whileconvergingtowardsoptimalsolutionsinthelaterstages.Theinertiaweightisdynamicallyupdatedbasedontheconvergencerateandadaptivelyadjustedduringtheoptimizationprocess. 3.2NeighborhoodTopology:Insteadofusingafixedneighborhoodtopology,weintroducedynamicneighborhoodstructuresthatchangeateachiteration.Thispromotesglobalexplorationandavoidsgettingstuckinlocaloptima. 3.3ChaoticInitialization:Chaoticinitializationisut