预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于自适应特性二维经验模式分解的Retinex彩色图像增强 摘要 Retinex彩色图像增强已成为计算机视觉和图像处理领域的一个重要问题。尽管目前已经有许多优秀的Retinex增强算法被提出,但它们在保留图像细节和增强背景特征等方面仍然存在一些问题。为了克服这些问题,本文提出了一种新的基于自适应特性二维经验模式分解的Retinex彩色图像增强方法。该方法利用Retinex算法和双边滤波器来分离彩色图像的光照分量和反射分量。接下来,通过自适应特性二维经验模式分解,将反射分量进一步分解为基函数和模态系数。最后,通过调整模态系数以达到增强彩色图像的目的,该方法达到了一定的增强效果。实验结果表明,所提出的方法在保留细节和背景特征等方面具有较好的效果。 关键词:Retinex;彩色图像增强;二维经验模式分解;自适应特性 Introduction Retinexisaclassicaltheoryincolorimageenhancement,whichwasproposedbyLandandMcCannin1971.TheRetinextheoryaimstoseparatetheluminanceandreflectancecomponentsofanimage.Bydoingso,theRetinextheorycanenhancethevisualqualityofanimagewithoutlossofdetailorcolordistortion.Retinexenhancementalgorithmshavebeenextensivelystudiedandhavebecomeanimportanttopicincomputervisionandimageprocessing. However,existingRetinexenhancementalgorithmsstillhavesomeproblems,suchasdifficultyinpreservingimagedetailsandenhancingbackgroundfeatures.Toovercometheseproblems,weproposeanewRetinexcolorimageenhancementmethodbasedonadaptivecharacteristictwo-dimensionalempiricalmodedecomposition. Methodology Theproposedmethodconsistsoftwoparts:theseparationofluminanceandreflectancecomponentsusingRetinexandtheenhancementofthereflectancecomponentusingadaptivecharacteristictwo-dimensionalempiricalmodedecomposition. Firstly,weseparatetheluminanceandreflectancecomponentsofthecolorimageusingRetinexandbilateralfiltering.Thebilateralfiltercansmooththeimagewhilepreservingitsedges.TheRetinextheorycanseparatetheluminanceandreflectancecomponentsbasedonthelogarithmictransformationoftheimage.Thelogarithmictransformationisdefinedasfollows: log(R+1)=log(I+1)-log(G+1)-log(B+1) whereR,G,Barethered,greenandbluecolorvaluesoftheimage,respectively. Secondly,weuseadaptivecharacteristictwo-dimensionalempiricalmodedecompositiontofurtherdecomposethereflectancecomponentintobasicfunctionsandmodalcoefficients.Thedecompositionprocessisadaptive,whichmeansthatthealgorithmdynamicallyadjuststhedecompositionparametersbasedonthecharacteristicsoftheimage. Finally,weadjustthemodalco