一类具时滞的SIR传染病模型的定性分析.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一类具时滞的SIR传染病模型的定性分析.docx
一类具时滞的SIR传染病模型的定性分析一类具时滞的SIR传染病模型的定性分析传染病在人类历史上造成了巨大的灾难,对人们的健康、社会经济以及生活方式造成了严重的影响。为了更好地理解和预测传染病的传播和控制机制,数学模型成为研究的重要工具。其中,SIR模型是一种常见的基于流行病学原理的数学模型,它将人群分为易感者(Susceptible)、感染者(Infected)和康复者(Recovered)三个互相转化的部分。然而,现实中的传染病传播往往受到多种因素的影响,如有限资源分配、个人行为等,这些因素使得传染病的
一类具免疫控制的SIR传染病模型的稳定.docx
一类具免疫控制的SIR传染病模型的稳定性信息与计算科学专业学生:肖宪伟指导教师:宫兆刚摘要:利用微分方程理论研究了具有免疫控制的数学模型,考虑总人口数是常数输入的影响,讨论了模型无病平衡点和地方病平衡点的存在性,利用特征值方法和Jacobi矩阵得到了无病平衡点和地方病平衡点的局部稳定性。构造Dulac函数的方法,得到了无病平衡点和地方病平衡点的全局稳定性充分条件,利用Matlab软件进行了数值模拟。关键词:免疫控制;Jacobi;Dulac;平衡点;全局稳定性1引言面对传染病长期严峻的威胁和日益出现的新的
一类考虑存活率的时滞SIR传染病模型的Hopf分支研究.docx
一类考虑存活率的时滞SIR传染病模型的Hopf分支研究时滞SIR传染病模型是描述传染病在人群中传播过程的重要数学模型之一。在该模型中,将人群分为三类:易感染者、感染者和康复者。该模型采用微分方程来描述病毒在人群中的传播情况,其中包含了传染病的基本再生数R0,用于衡量病毒在人群中的传播性能。本文将讨论一类考虑存活率的时滞SIR传染病模型的Hopf分支研究。该模型的主要假设是病毒在人群中的传播受到人口增长、限制、卫生条件、医疗条件等多种因素的影响。对于此类问题的研究,时滞是一个重要的因素。在时滞模型中,感染者
一类时滞SIR和SIS传染病组合模型行波解存在性分析.pptx
一类时滞SIR和SIS传染病组合模型行波解存在性分析目录引言传染病模型研究背景时滞SIR和SIS模型的研究意义行波解存在性的研究现状模型建立SIR模型建立SIS模型建立时滞因素考虑组合模型的建立行波解存在性分析波速的确定波形的分类行波解的存在性证明数值模拟与结果分析数值模拟方法介绍数值模拟结果展示结果分析结论与展望研究结论研究不足与展望THANKYOU
时滞SEIR和SIR传染病模型的相关研究.docx
时滞SEIR和SIR传染病模型的相关研究近年来,传染病在全球范围内频繁爆发,给人们的生命健康带来极大的威胁。为了更好地预测和控制传染病的流行,研究人员不断地进行探索和研究,最终推导出了许多传染病模型,其中时滞SEIR和SIR传染病模型是相对较为成熟和广泛应用的一种模型。本文将就这两种模型的研究进行探讨。传染病是一种传染性很强的疾病,它的传播方式主要有空气传播、飞沫传播、血液传播等。人们经常使用传染病模型来研究传染病的传播方式和流行趋势,以方便更好地进行预测和控制。其中时滞SEIR模型和SIR模型是比较常见