预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共72页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

向量自回归模型向量自回归(VAR)是基于数据的统计性质建立模型,VAR模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。VAR模型是处理多个相关经济指标的分析与预测最容易操作的模型之一,并且在一定的条件下,多元MA和ARMA模型也可转化成VAR模型,因此近年来VAR模型受到越来越多的经济工作者的重视。 VAR(p)模型的数学表达式是 (3.1.1) 其中:yt是k维内生变量向量,Xt是d维外生变量向量,p是滞后阶数,样本个数为T。kk维矩阵A1,…,Ap和kd维矩阵B是要被估计的系数矩阵。t是k维扰动向量,它们相互之间可以同期相关,但不与自己的滞后值相关及不与等式右边的变量相关由于仅仅有内生变量的滞后值出现在等式的右边,所以不存在同期相关性问题,用普通最小二乘法(OLS)能得到VAR简化式模型的一致且有效的估计量。即使扰动向量t有同期相关,OLS仍然是有效的,因为所有的方程有相同的回归量,其与广义最小二乘法(GLS)是等价的。注意,由于任何序列相关都可以通过增加更多的yt的滞后而被消除(absorbed),所以扰动项序列不相关的假设并不要求非常严格。(二)EViews软件中VAR模型的建立和估计可以在对话框内添入相应的信息: (1)选择模型类型(VARType): 无约束向量自回归(UnrestrictedVAR)或者向量误差修正(VectorErrorCorrection)。无约束VAR模型是指VAR模型的简化式。(3)在LagIntervalsforEndogenous编辑框中输入滞后信息,表明哪些滞后变量应该被包括在每个等式的右端。这一信息应该成对输入:每一对数字描述一个滞后区间。例如,滞后对 14 表示用系统中所有内生变量的1阶到4阶滞后变量作为等式右端的变量。 也可以添加代表滞后区间的任意数字,但都要成对输入。例如: 24691212 即为用2―4阶,6―9阶及第12阶滞后变量。(4)在EndogenousVariables和ExogenousVariables编辑栏中输入相应的内生变量和外生变量。系统通常会自动给出常数c作为外生变量,但是相应的编辑栏中输入c作为外生变量,也可以,因为EViews只会包含一个常数。 其余两个菜单(Cointegration和Restrictions)仅与VEC模型有关,将在下面介绍。2.VAR估计的输出 VAR对象的设定框填写完毕,单击OK按纽,EViews将会在VAR对象窗口显示如下估计结果:表中的每一列对应VAR模型中一个内生变量的方程。对方程右端每一个变量,EViews会给出系数估计值、估计系数的标准差(圆括号中)及t-统计量(方括号中)。 同时,有两类回归统计量出现在VAR对象估计输出的底部:11输出的第一部分显示的是每个方程的标准OLS回归统计量。根据各自的残差分别计算每个方程的结果,并显示在对应的列中。 输出的第二部分显示的是VAR模型的回归统计量。残差的协方差的行列式值由下式得出:其中m是VAR模型每一方程中待估参数的个数,是k维残差列向量。通过假定服从多元正态(高斯)分布计算对数似然值: AIC和SC两个信息准则的计算将在后文详细说明。无论建立什么模型,都要对其进行识别和检验,以判别其是否符合模型最初的假定和经济意义。本节简单介绍关于VAR模型的各种检验。这些检验对于后面将要介绍的向量误差修正模型(VEC)也适用。 (一)Granger因果检验 VAR模型的另一个重要的应用是分析经济时间序列变量之间的因果关系。本节讨论由Granger(1969)提出,Sims(1972)推广的如何检验变量之间因果关系的方法。1.Granger因果关系的定义 Granger解决了x是否引起y的问题,主要看现在的y能够在多大程度上被过去的x解释,加入x的滞后值是否使解释程度提高。如果x在y的预测中有帮助,或者x与y的相关系数在统计上显著时,就可以说“y是由xGranger引起的”。这样可以更正式地用如下的数学语言来描述Granger因果的定义:如果关于所有的s>0,基于(yt,yt-1,…)预测yt+s得到的均方误差,与基于(yt,yt-1,…)和(xt,xt-1,…)两者得到的yt+s的均方误差相同,则y不是由xGranger引起的。对于线性函数,若有可以将上述结果推广到k个变量的VAR(p)模型中去,考虑对模型(3.1.5),利用从(t1)至(tp)期的所有信息,得到yt的最优预测如下: (3.2.3) VAR(p)模型中Granger因果关系如同两变量的情形,可以判断是否存在过去的影响。作为两变量情形的推广,对多个变量的组合给出如下的系数约束条件:在多变量VAR(p)